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Abstract— A fundamental task for a robotic audition system
is sound source localization. This paper addresses the local-
ization problem in a robotic humanoid context, providing a
novel learning algorithm using binaural auditive cues to deter-
mine the sound source’s position. Sound signals are extracted
from a humanoid robot’s ears. Binaural auditory cues are
then computed to provide inputs for a neural network. The
neural network uses pixel coordinates of a sound source in a
camera image as outputs. This learning approach provides good
localization performances as it reaches very small mean errors
for azimuth and elevation angles estimates.

Keywords — Binaural audition, Sound processing, Local-
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I. INTRODUCTION
Robots and intelligent systems are becoming more and

more reliable as partners in the humans’ everyday life.
Nowadays, it has become possible to envision machines in
social interaction. One of the most important parts of social
interaction is speech. Indeed, a sound signal holds various
information: sound sources identities, their spatial locations
and the contents of the emitted sounds. This brings to the fore
multiple problems that a machine audition system has to deal
with: Voice Activity Detection (VAD), speaker and speech
recognition, and sound source separation and localization.

Sound source localization has been widely studied in the
last few decades. Most of the previously built systems use
microphone arrays together with techniques like beamform-
ing [14]. But microphone-array based systems are often
computationally expensive, which makes it important to use
less complex methods. In this context, binaural audition has
emerged as an interesting low-complexity and biologically-
inspired sound processing domain. It is based on the use
of the signals captured by only two microphones to reach
human-like auditive capabilities. Indeed, binaural processing
has been used in multiple applications, like sound source
localization [12], [4]. Binaurality also provides good per-
formances for speech enhancement [2], and voice activity
detection [2]. We have also proposed in [15] a binaural
speaker recognition system, which has been shown quite
sensitive to the speaker position with respect to the robot’s
head.

Nevertheless, the impressive human auditive capabilities
are not reached thanks to the two ears only. Vision plays
a very important role in a scene analysis and some recent
works hypothesize some visually guided auditory adaptation
processes for seer people [6].
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Studies that try to model the human head and to link
the auditive cues to its geometry and to the sound source
direction have been proposed before [8], [4] and [5]. Thus,
an inversion the measured cues at a time instant, based on the
built models permits to deduce the sound source position. But
when such systems are used in experimental conditions, the
models fail and do not comply with reality. On the contrary,
learning approaches might be better adapted and more robust
to such problems.

In this context, this paper presents a novel sound source
localization system. It provides a new way of coupling
vision and sound, in a learning based approach that provides
effective localization capabilities. The system learns the
relationship between the visualized positions of the sound
source and the auditory cues extracted from two ears. So
vision only provides a tool to represent the sound source’s
position in the scene, and the localization, expressed in pixel
positions inside an image, relies on the information provided
by the auditive cues. The approach is less complex and
has a better spatial resolution than related works [11], [7]
and [9]. For now, the work disregards the hypothesis of
multiple sound sources, including noises and reverberations.
The feasibility of the approach is tested and discussed in this
paper, for a generalization to more realistic environments
in following works. The proposed approach is based on
a learning algorithm using a neural network. Contrarily
to many studies that only address the azimuth estimation
like [7], [11], this work aims at estimating both azimuth and
elevation at the same time.

The paper is organized as follows: the azimuth and ele-
vation estimation methods are presented in the next section.
Simulation and experimental tests results are presented in
Section III. The results are discussed in Section IV, Finally,
a conclusion ends the paper.

II. AZIMUTH AND ELEVATION ESTIMATION

A. Azimuth estimation

For the azimuth estimation, the inputs of the aforemen-
tioned network are code vectors composed of Interaural
Level Differences (ILD), Interaural Phase Differences (IPD)
and Interaural Time Difference (ITD). These cues are pre-
cisely described in a first subsection. The neural network
itself, together with the learning algorithm is depicted in a
second subsection. Finally, the outputs of the networks are
introduced in the last subsection.

1) Network inputs: auditory cues extraction: As it can be
seen in Figure 1, signals from both robot ears are exploited
to compute the interaural auditory cues. The human cochlear



Fig. 1. Auditory cues extraction diagram.

filtering is artificially reproduced by a set of 20 gammatone
filters defined in [10]. Their central frequencies fc(i) range
from 100Hz to about half of the sampling frequency fs =
44100Hz. This process leads to 20 signals per ear, the
interaural cues being then extracted from these 20 signals
through the following methodology.

2) Interaural Level Difference: The ILD is a frequency-
dependent cue that reflects the difference in powers of the
signals reaching the two ears. An ILD for each gammatone
filter’s frequency range can be extracted according to:

ILD(fc(i)) = 20 log10
El(fc(i))

Er(fc(i))
, (1)

where El(fc(i)) and Er(fc(i)) respectively represent the
left and right cochlear filter output powers correspond-
ing to the ith gammatone response centered at frequency
fc(i), i ∈ [1, 20].

3) Interaural Phase Difference: IPD refers to the differ-
ence in the phases of waves reaching the ears. It is obtained
with:

IPD(fc(i)) = 2πfc(i)τlr(fc(i)),with (2)

τlr(fc(i)) = k/fs and k = argnmax(R
(i)
lr [n]),

where R(i)
lr [n] =

1
N

∑N−n−1
m=0 li[m + n]ri[m] is the biased

estimate of the cross-correlation function between the two
signals li[n] and ri[n] originating from the ith left and right
gammatone filters respectively.

4) Interaural Time Difference: ITD reflects the difference
between the lengths of the paths to be traveled by the sound
wave before reaching the ears. It is computed by:

ITD =
1

2π
f+ IPD(f), (3)

where (.)+ denotes the Moore-Penrose pseudo-
inverse, f = (fc(1), fc(2), . . . , fc(Nfilter))

T

and IPD(f) = (IPD(fc(1)), . . . , IPD(fc(Nfilter)))
T .

Consequently, the ITD value is obtained by a least
square operation performed on the IPD.

5) Code vector constitution: ILDs and IPDs are known to
be not meaningful for low and high frequencies respectively.
ILD is computed for frequencies higher than 1.5kHz, while
IPD is taken into account for frequencies lower than 3kHz.
These respective frequency intervals are considered, as the
respective cues outside them don’t carry much information.
So, the final neural network’s input code vectors are com-
posed of 13 ILDs, 12 IPDs and a single ITD value, which
makes a total input dimension of 26.

6) Network constitution and learning algorithm: The
neural network used in this study is a feed-forward multi-
layer perceptron (MLP) with one hidden layer composed
of 15 cells. Since the input code vectors contain data of
different types (amplitudes, phases and times), a regular
complete connections neural network –i.e. a network where
each hidden cell is connected to all input cells– is not
physically adapted to these inputs. A hidden cell should not
be connected to two inputs of two different types. Therefore,
one hidden cell is dedicated to the ITD, 7 are dedicated to
the ILDs and 6 to the IPDs. And the connections between
the hidden cells and the outputs are kept unmodified.

The training of the neural network is performed with
the full gradient backpropagation algorithm. Cross-validation
steps are performed periodically, and the training is stopped
when the performances of the network stop improving.

7) Network outputs: sound source representation: In this
paper, the proposed sound source is a loudspeaker carrying
three colored markers. A camera mounted on the robot’s
head takes movies of the moving sound source and an
image processing system analyses the captured images and
evaluates the line and column indices of each marker’s center
in the image. For the azimuth estimation, the outputs of
the network are only the three column indices of the three
markers.

B. elevation estimation

Tests performed with interaural cues on elevation estima-
tion do not show satisfactory results. Indeed, interaural cues
contain powerful information about the azimuth, and very
weak information about the elevation [13].

The human pinna shape is at the origin of interferences
with the waves directly entering the auditory canal, caus-
ing constructive and/or destructive reflections at specific
frequencies depending of the sound source location. This
phenomenon produces spectral peaks and notches which
are supposed to be used by humans when evaluating the
elevation of a sound source [3]. In this field, one can cite [13],
where is presented a method using spectral cues for the
elevation estimation with a robot having two logarithmic-
shaped reflectors as pinnas. We propose here to compute
for each source position the energies coming from the 2
cochlear filter-banks. These energies are expected to capture
the aforementioned reflections translated by high and low
energies in specific spectral areas, and thus to better the
elevation estimation performances of the proposed approach.
Only one regular neural network is now used to estimate the
three line coordinates of the three markers in a simulated
image. The input of this network is now made of 40 energy
values corresponding to the 2 × 20 gammatone filters, and
the outputs are the three markers’ line coordinates.

III. SIMULATIONS AND EXPERIMENTS

In order to evaluate the proposed approach, simulated
and experimental databases have been elaborated. In both
cases, the sound source emits a white discrete Gaussian noise
(useful here as its spectrum spreads over a wide frequency



band). The cues are extracted on the basis of 1024-points
time windows lasting 23ms with a sampling frequency of
fs = 44.1kHz.

In both cases, the learning of the neural networks is done
with 60% of the total amount of data, the cross-validation
uses 20% and the remaining 20% are used for testing. In
the testing phase, the networks provide an estimation of
the outputs (line and column indices of the three markers)
based on the perceived auditory inputs. The mean Euclidean
distance between the estimated outputs and the real ones is
defined as the network’s mean estimation error.

A. Simulations

This subsection presents an artificially generated database
and the resulting localization performances. An artificial
robot is placed in an environment where a sound source
is moving. For each source position, the left and right ear
signals are computed and a virtual camera placed on the
robot’s head detects the source position in an image.

1) Database generation: The simulated input database is
generated from the noise signal coming from the source, con-
volved with impulse responses known as Head Related Im-
pulse Responses - HRIRs for different spatial positions.This
allows to obtain the left and right signals, with a sound source
located in the HRIR specified position. The CIPIC database
provides these left and right impulse responses for various
azimuths and elevations [1].

To obtain the outputs, a camera model has been simulated.
It projects the three markers in the image to obtain their
horizontal and vertical positions pixx and pixy in pixels,
based on the loudspeaker’s center’s given position. In the
testing phase, the network provides estimations of the line
and column indices, p̂ixy and p̂ixx respectively. An inverse
of the camera model gives then the corresponding estimated
angles φ̂ and θ̂, the estimation errors being then defined as
εφ = |φ− φ̂| and εθ = |θ − θ̂| respectively.

2) Localization results: During the learning and testing
steps, the database is restricted to angles between −45◦ and
45◦ with a 1◦ step for both azimuth an elevation for a total
number of 8281 examples. This allows to have the same
resolution for both angles and to efficiently compare their
relative results. Recall that after the training step, the neural
network is able to produce an estimation of the line and
column indices p̂ixy and p̂ixx, which are then expressed in
terms of the two angles φ̂ and θ̂. The resulting estimations are
shown in Figure 2. As expected, they show a high accuracy
in the azimuth and elevation estimation, having mean errors
of only 0.82◦ and 2.06◦, and mean standard deviations of
1.22◦ and 1.69◦ respectively.

B. Experiments

This subsection presents experimental results obtained
with real binaural signals recorded by using a dummy head
and images provided by a camera mounted on top of it.

1) Database: The experimental database has been
recorded in an acoustically prepared room A KU100 dummy
head from Neumann is employed. It has two microphone

(a)

(b)
Fig. 2. Simulation: estimation results, predicted angles as a function of
the real angles. (a) azimuth angle, (b) elevation angle.

capsules built inside two human-like ears, thus reproducing
the effects of the human head and outer ears on a sound
signal, before reaching the inner ear. The two microphone
outputs are synchronously acquired by a National Instru-
ments PCI acquisition board through 24 bits delta-sigma
converters operating at a sampling frequency fs = 44.1kHz.
A camera from Baumer is placed on top of the head, and
provides 44 photos per second with a 640*480 resolution.
This frame rate is selected to easily synchronize each frame
with an approximately 23ms sound frame. A small portable
round loudspeaker with a frequency response ranging from
200Hz to 16kHz is used to emit a white Gaussian noise. 3
colored patches are sticked in front of it, an image processing
algorithm gives then the coordinates of the centers of the
patches. During a recording, a person holds the loudspeaker
emitting the noise in the camera field of view, and moves it
in different directions (left, right, up, or down).

2) Localization results: When working with this exper-
imental setup, the exact relative angular location of each
marker with respect to the head is unknown. Indeed, the
approach uses the camera since this relative position is
directly reflected by the corresponding pixel coordinates in
the image plane. So, the experiments will be assessed by
comparing the actual pixel coordinates pixy and pixx to the
prediction p̂ixy and p̂ixx produced by the neural networks.
Having three points, the mean real and estimated coordinates
are compared, so as to estimate the mean real and estimated
loudspeaker centers. Note that the results presented in this
section are obtained on a 12s-recording during which the
sound source moves in the image. Estimations are reported
in Figure 3. They show that the predicted pixel coordinates
follow the real ones quite well, while the column estimation
results are better than the line estimation results, which is
inline with the simulation results showing a better estimation
in the azimuth case.

Figure 4 shows a comparison between a predicted tra-
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Fig. 3. Experiments: estimation results, predicted dimensions as a function
of time. (a) columns, (b) lines.

Fig. 4. Experiments: a truncated view of an image taken by the camera.
It shows a predicted trajectory made by the sound source (blue) and the
corresponding real trajectory (red).

jectory and a real one. It can be seen that the system
follows the target source quite accurately. The observed
differences between the two trajectories are mainly caused
by the line coordinates whereas the column coordinates are
better estimated.

IV. DISCUSSION

The tests made on the simulated and the experimental
databases lead to the same conclusions: the system is able
to efficiently estimate the position of the sound source, with
better performances in the azimuth estimation than in the
elevation estimation. Compared to related works, this system
has a higher resolution and is less complex. For example,
one can cite [11] where a parametric model computing ILDs
and IPDs as a function of the azimuth is used, and these
cues are inverted to deduce the azimuth. But the estimation
errors are higher than those obtained in our study, and the
resolution is weaker (also 5 degrees in azimuth). Also in [7]
and [9], the binaural systems rely on probabilistic approaches
needing large databases and computational capabilities, and
have position resolutions of 5◦.

V. CONCLUSION

A sound source localization system has been presented.
It deals with the localization problematic in a new learning
fashion using cues extracted from both human-like ears of a
humanoid robot and visual indices from a camera placed on
its head. While the interaural cues provided very satisfactory
results for azimuth estimation, output energies from a set of

cochlear filters allowed to efficiently determine the source’s
elevation. The described works provided an efficient tool in
adequate acoustic conditions, current works are aiming at
generalizing the tests to more complex situations. Noises and
reverberations are to be taken into account, with human voice
sound signals. In such a case, the image processing stage will
then consist in a face detection system to provide the training
data’s speaker pixel position.
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