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Abstract—In this paper, an original study of a binaural speaker
identification system is presented. The state of the art shows
that, contrarily to monaural and multi-microphone approaches,
binaural systems are not so much studied in the specific task of
automatic speaker recognition. Indeed, these systems are mostly
used for speech recognition, or speaker localization. This study
will focus on the benefits of the binaural context in compari-
son with monaural techniques. It demonstrates the interest of
the binaural systems typically used in humanoid robotics. The
system is first tested with monaural signals, and then with a
binaural sensor, in many signal to noise ratios, speech durations
and speaker directions. Up to 11 percent of improvement in
recognition ratios of 23 ms frames can be obtained. The used
database is a set of audio tracks recorded for 10 speakers, and
filtered by HRTFs to obtain binaural signals in the directions of
interest, for the binaural training and testing steps. This way, we
study the sensitivity of the system to the speaker’s location in an
environment where a maximum of 10 speakers is present.

Index Terms—Speech processing, speaker identification, bin-
aural hearing, humanoid robot, GMM, MFCC.

I. INTRODUCTION

The auditory perception is a very important sense for hu-
mans and other living creatures, helping them to communicate
in their surrounding environment. Indeed, humans can under-
stand speech and recognize speakers and other sound sources.
So, giving robots such capabilities is clearly of interest, thus
making us able to use our best means of communication: our
voice. Robot audition is a growing field of research, and a lot of
recent works have tried to reproduce the amazing auditive hu-
man capabilities, including sound localization, noise filtering,
sound extraction and recognition, etc. This paper focuses on
Automatic Speaker Recognition (ASkR), for humanoid robots
equipped with two ears. More precisely, ASkR is the process
of knowing who is speaking to a machine among a number of
persons, based on their vocal characteristics. This identification
can be done with a closed set or an open set of persons
(identifying a known or an unknown speaker, an impostor),
and can be text-dependent or independent. The first studies in
this field took place fifty years ago and their progress continues
until nowadays [1]. ASkR interest is actually growing thanks
to the numerous various fields of applications it covers. For
instance, it can be used for audio surveillance, with aged and
sick persons at home. It still faces the effects of noise and
reverberations, and the mismatch between the learning and
testing phases of the classifiers. Other problems exist, such as
the insufficient learning data, and the intra-speaker variability
of speech.

Speaker identification has already been widely studied in
the single microphone case, where only one signal is present.
A variety of operations can be performed, and very good
results can be achieved in adequate environments. For instance,
[2] proposes a method using the Mel Frequency Cepstral
Coefficients (MFCCs) together with Support Vector Machine
(SVM) classifiers to perform the recognition. In the same vein,
[3] and [4] exploit spectral subtraction in order to reduce
noise influence. Nevertheless, these approaches are not so
robust against high noise level or reverberations, and present
a loss of performance when compared to systems working
with more than one microphone. Indeed, the redundancy
brought by microphones array could be exploited to better the
recognition performances. But two different approaches to the
identification problem can be exhibited in this multiple signal
case:

• on the one hand, a lot of works deal with the intelligent
combination of multiple signals into a single one being
generally less corrupted by noise. Classical monaural
methods can then be exploited to perform the recognition.
One can cite beamforming approaches, whose goal is to
focus a microphones array in a specific direction, thus
improving the speech signal [3], [4]. Gaussian Mixture
Model (GMM) robustness to noise in a speech/pause
system has been evaluated in [5] through adaptive noise
cancellation methods based on beamforming. Identically,
matched filter arrays are used in [6] where a parameteri-
zation analysis of an ASkR system is presented.

• on the other hand, other works propose to extract fea-
tures from each available signal before the recognition
algorithm. As an example, one can cite [7], where the
identification results reached by GMMs are combined on
the basis of a 8 microphones array. In the binaural con-
text, [8] developed a feature vector combination method
optimizing the mixture weight value.

This paper is more concerned by this second approach,
envisioned in a binaural context. But binaural ASkR, exploiting
only the two auditory signals perceived by our two ears, has
not been so covered by the literature. Actually, existing studies
specifically focused on noise reduction and simulation of the
human auditory system for speech recognition and localization,
and not so much on speaker identification. For instance, [9]
developed a binaural model for speech recognition, simulating
the functioning of the the cochlea. The design of an artificial
ear is presented in [10], by taking into account the spectral



changes induced by the pinna and the concha in the speech
signal. The resulting system is then exploited for localization.
The binaural case has also been used in [11] to reduce noise
and reverberations effects through blind source separation. One
can also cite [12], where adaptive noise reduction permits voice
activity detection through neural networks, but also speech
localization and recognition with a binaural sensor. Similarly,
noise estimation techniques applied to one of the two available
signals allow the cancellation through adaptive filtering of the
noise in the second signal [3], [4], [13]. Finally, not so much
works deal with speaker recognition in the binaural context.

The paper is organized as follows. The proposed monaural
and binaural speaker recognition systems are depicted in
section II. They are next both compared in Section III. The
influence of the noise and of the speaker position is also
carefully addressed. Finally, a conclusion ends the paper.

II. MONAURAL AND BINAURAL RECOGNITION SYSTEMS

The proposed ASkR system is presented in this section.
It is text-independant, and mainly relies on MFCC features
combined with GMM classification, both being evaluated in a
one channel (monaural) or two channels (binaural) configura-
tion. The later is addressed as a bioinspired system, simulating
the auditory human perception. Consequently, such a binaural
system is naturally well suited to humanoid robotics. For each
case, the influence of noise and speech duration will then be
investigated in §III.

The evaluation of the approach is based on a high quality
audio database, acquired from long French monologues in
identical and good conditions. It is made of 10 speakers,
with 28 tracks per speaker, each track lasting 15 seconds.
So, 7 minutes per speaker are available, for a total of 70
minutes-length audio signals. The original sampling rate is
fs = 44100Hz, but all the tracks have been downsampled
to fs = 22050Hz, and so treated by Chebychev anti-aliasing
filters.

A. Monaural speaker identification system

The proposed monaural system is based on the follow-
ing successive computation steps, see Figure 1. First of all,
23ms-length frames are extracted from the acquired signal.
The energy of each frame is computed and compared with
a threshold T to eliminate non-speech portions. Next, pre-
accentuation and Hamming filters are exploited to obtain useful
speech frames. Finally, 16 MFCC and 16 ∆-MFCC coefficients
are extracted from these frames, with an overlapping factor
set to 0.5. These features are then used to train and test the
recognition algorithm. The major steps of this conditioning are
described hereafter.
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Fig. 1. Major steps of the monaural system.

1) MFCC coding: MFCCs are commonly used as features
in speech and speaker recognition systems. They can be
interpreted as a representation of the short-term power density
of a sound. These coefficients are commonly derived as follow
(see Figure 2):

• Compute the Fourier Transform (FFT) X[k] of the con-
sidered time frame.

• Apply to X[k] a set of N = 25 triangular filters regularly
spaced on the mel scale defined by

mel(f) = 2595 log10

(
1 +

f

700

)
(1)

• Compute the N output energies S[n] of each filter.
• Compute the kth MFCC coefficient MFCCk value with

MFCCk =

N∑
n=1

log10(S[n]) cos
(kπ(2n− 1)

N

)
(2)

Note that in order to increase the robustness of the method
in the presence of noise, the 16 MFCC coefficients are
normalized. The objective of the mel-scale introduced in the
MFCC computation is to approximate the human auditory
system response more closely than the classical linearly-spaced
frequency bands. More precisely, the mel scale is shown to be
a perceptual scale of pitches judged by listeners to be equal
in distance from one to another. As a consequence of this
decomposition, the representation of the speech signal infor-
mation is close to the human perception of sounds, providing
high resolution for the low frequencies and a weaker resolution
for high frequencies.
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Fig. 2. MFCC coding

Additionally, 16 ∆-MFCC coefficients are also computed.
They represent the variations of the original MFCC features
as a function of time and are simply obtained from a 8th-order
FIR filter applied on the MFCC vectors.

2) GMM: In statistics, a mixture model (MM) is a prob-
abilistic model for density estimation using a mixture distri-
bution. In the Gaussian case, a Gaussian MM (GMM) is a
simple linear superposition of Gaussian components, which
aims at providing a richer class of density models than a single
Gaussian [14]. For a model of M Gaussian states, a GMM
density function function of a variable xn can be defined as

p(xn|λ) =

M∑
i=1

pibi(xn), (3)

where pi is the probability of being in the state i and bi the
Gaussian density function of mean µi and covariance Σi. λ
writes as

λ = {pi, µi,Σi}, i = {1, . . . ,M}, (4)

and represents the set of weights pi, mean vectors µi and
covariance matrices Σi of the GMM states.



In a speaker identification task, a M state GMM is as-
sociated to each of the S speakers to be discriminated.
On this basis, the aim is to determine which model num-
ber Ŝ has the biggest a posteriori probability over a set
X = {x1, x2, . . . , xN} of measured MFCC and ∆MFCC fea-
tures , that is, according to Bayes rules,

Ŝ = Arg max
1≤k≤S

p(λk|X) = Arg max
1≤k≤S

p(X|λk)p(λk)

p(X)
. (5)

In this case, λk = {p(k)i , µ
(k)
i ,Σ

(k)
i }, i = {1, . . . ,M}, rep-

resents the mixture parameterization of the M -state GMM
associated to the kth speaker. Assuming that the a priori
probability p(λk) is the same for all speakers, and for one
set of measured data X , equation (5) can be simplified as

Ŝ = Arg max
1≤k≤S

p(X|λk). (6)

3) Expectation - Maximization: The objective is now to
learn the 3×M parameters included in λk describing the GMM
related to the kth speaker. This is achieved through the classical
iterative Expectation - Maximization (EM) algorithm [15].
Such a method exhibits a fast convergence of the parameters
and is based on two successive steps: expectation (E) and
maximization (M).

In the E step, responsibility functions fk(i|xn, λk) are
estimated, with

fk(i|xn, λk) =
pi(k)bi(xn)

p(xn|λk)
, (7)

where i represents ith state among the M states of the kth

speaker GMM. In the M step, the GMM parameters are
updated on the basis of the previous function computed during
the E step, that is

p
(k)
i =

1

N

N∑
n=1

f(i|xn, λk),

µ
(k)
i =

∑N
n=1 xnf(i|xn, λk)∑N
n=1 f(i|xn, λk)

, (8)

Σ
(k)
i =

∑N
n=1(xn − µ(k)

i )(xn − µ(k)
i )T f(i|xn, λk)∑N

i=1 f(i|xn, λk)
,

with i = {1, . . . ,M}. These two steps are then iterated until
convergence of the set λk; the convergence of the algorithm
is evaluated through the log-likelihood log(pl(X|λk)), with
l denoting the lth iteration of the algorithm. The learning is
initialized with a first clustering of the data obtained with a
K-means algorithm. Note that during this learning step, no
interaction occurs between the GMMs of different speakers.

Once the 3 ×M × S GMM parameters of the S speakers
are known, these Gaussian models are exploited to perform
the recognition as follows. As soon as a set of new features
X is available, the predicted speaker is selected as being
the speaker having the GMM with the highest a posteriori
probability p(λk|X), see Equation (6). Interestingly, such easy
computations are not time consuming, thus allowing a real time
implementation of the method.

B. Binaural speaker identification system

The overall functioning of the monaural system has been
just described. In the binaural context, the proposed method
only differs from the previous one in the feature extraction
step. Indeed, there is now two signals corresponding to the left
and right perceived auditive signals. The question is now: how
to combine the available auditory features ? In this paper, we
only focus on a simple concatenation of the two feature vectors
originating from the left and right signals, see Figure 3. Other
strategies are currently in investigation and will be presented
in future works.
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Fig. 3. Major steps of the proposed binaural system.

In the following, the binaural speech signals are simulated
by convoluting the monaural speaker database signals with
impulse responses coming from a HRTF database. The Head
Related Transfer Function (HRTF) describes how a sound
signal is altered by the acoustical properties of diffraction
and/or reflection of our head, outer ear and torso, before
reaching the transduction stages of the inner ear. This effect
is traditionally modeled as a filter whose impulse response is
a function of of the sound sources position with respect to
the head. Biologically, this specific position-related filtering
helps the determination of the source’s position. For instance,
it has been shown that two binaural cues named Interaural
Time Difference (ITD) and Interaural Level Difference (ILD)
are responsible for our horizontal sound localization. These
cues can be directly extracted from the aforementioned HRTF
filters. Practically, the frequency responses of these filters
are identified through the Fourier Transform of the HRIR
(Head Related Impulse Response). The HRTFs are typically
measured in an anechoic room, in order to minimize the
influence of spontaneous reflections and reverberations on the
measured response. In this paper, the KEMAR dummy-head
HRTF is used, being made freely available by the CIPIC
Interfaces Laboratory of the University of California [16]. This
HRTF Database is public, and made of high spatial resolution
HRTF measurements for 45 different subjects. The database
includes 1250 HRTF-identifications for each subject, recorded
at 25 interaural-polar azimuths and 50 interaural-polar el-
evations (see [16] for more detailed information). Finally,
speech signals and HRTF database have been acquired with



a sampling frequency fs = 44100Hz, and then downsampled
to fs = 22050Hz as in the monaural case.

III. EVALUATION OF THE METHOD

In this section, monaural and binaural speaker recognitions
are compared. First, classical monaural recognition rates are
obtained in the first subsection. These results are then exploited
to show the benefits of the binaural case in a second subsection.
The sensibility of the recognition with respect to noise level
and speaker position is also tested.

In the following, the speaker database is divided into
two distinct parts. The first one, representing about 66% of
the database, is employed for the learning of the GMMs
(see §II-A2). We recall that this learning is achieved when all
the GMM parameters have converged, which is indicated by
the limitation of the recognition ratio’s log-likelihood growth.
The remaining database part (33%) is devoted to the evaluation
of the recognition capabilities of the proposed system.

A. Monaural case

In this subsection, the influence of the Signal to Noise Ratio
(SNR), the silence threshold T , the ∆MFCC coefficients on
the frame recognition rate is assessed. Next, an evaluation of
the method with longer duration testing sets is proposed.

1) Influence of noise, silence threshold and features: Here,
the learning and testing steps are performed on 23ms-frames.
The recognition ratio is then obtained by dividing the number
of well recognized frames by the total frame number of
the considered set. Next, additional white Gaussian noise is
added to the speech signal to produce various SNR conditions.
Finally, the silence removal process is applied on the resulting
noisy signal. The subsequent recognition ratios are depicted
in Figure 4 (left). Logically, the recognition performance
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Fig. 4. (Left) Monaural recognition ratio as a function of the SNR for distinct
silence threshold T (set to 0, 1 or 2%, 0% meaning no silence removal).
(Right) Recognition ratio with and without ∆MFCC.

increases when the signal to noise ratio also raises. In the same
vein, the highest performances are obtained with a high-value
silence threshold T = 0.02. But note that with this value,
the speech signal is highly degraded as a lot of frames are
classified as being silence. This results in a low frame number
available for the recognition process. Consequently, a value of
T = 0.01 is used in all the following.

While it is not presented here, the influence of the GMM
states number M has also been evaluated, for M = 8 to 32. As
the database is only made of 10 different speakers, the M value

Duration No Noise 10 dB 0 dB -3 dB
1 s 99.32 95.69 74.14 63.85
3 s 100 99.53 90.38 84.88
5 s 100 99.84 95.89 83.72
15 s 100 100 100 100

Fig. 5. Monaural recognition rates, for various time integration and SNR
conditions.

does not have any significant influence on the performances.
So, in the following M = 16 has been selected. For such a
value, 40 iterations are sufficient for the convergence of the
GMM parameters, like in [15].

Previously, MFCC coefficients only have been used during
the learning and testing steps. 16 ∆MFCC coefficients are
now also considered during these two steps, resulting in a
features vector of size 32. The subsequent recognition rates
are exhibited in Figure 4 (right). Clearly, considering ∆MFCC
coefficients can improve the recognition rate up to 8.5%. So, in
all the following, the features vector will always be composed
of 16 MFCC and 16 ∆MFCC features.

2) Influence of the testing duration: The previous study
has been performed on the basis of 23ms-length frames.
But considering real-life applications, recognition rates for
longer durations are clearly more realistic and meaningful.
Interestingly, this might also produce higher performance, as
the recognition can now be consolidated along time. This
integration is achieved by a majority vote algorithm performed
overs previous frames. In the following, the interpretation of
the results will especially focus on the recognition rate on
the frames, but also on longer signals lasting 1, 3, 5 and
15 seconds. The recognition rates obtained for the 1s-long
signals are of particular interest when trying to recognize the
speaker on the basis of only one pronounced word. In the same
way, 15s-long signals may provide a more efficient speaker
recognition of an entire phrase. These two specific scenarios
respectively correspond to 2 different interaction conditions: on
the one hand, the recognition capabilities of the robot must be
good enough to guarantee its reactivity in emergency situations
where short words are likely to be used. On the other hand,
longer speech signals relate to more classical situations during
the interaction. As expected, the recognition rates increase for
longer durations, and reach up to 100% for a 15s-long signal
even for low SNR values. This table will now serve as a
reference for comparison with binaural methods.

B. Binaural case

We propose in this part to evaluate the performance of the
proposed method in simulation on the basis of the previously
described binaural system (see §II-B). Because of the use of
binaural signals together with a learning algorithm, the position
of the simulated speaker will be of fundamental concern.
Actually, the questions are: ”will the system learn the speaker
position instead of the speaker himself ? And in the case of a
good speaker recognition, can the sensitivity of the approach to
the position be evaluated ?” This inherent position dependence



is carefully addressed in the following paragraphs. In all the
following, −3, 0 and 10 dB SNR value are considered, together
with ∆MFCC coefficients. Sources positions are given in
the form (θ, φ), with θ being the azimuth measured in the
horizontal plane, and φ the elevation in the vertical place.
θ = 0◦ and φ = 0◦ both corresponds to a sound source in
front of the head.

1) One direction for all speakers: In this first scenario,
the 10 speakers are all regrouped as emitting from the same
spatial direction. A first evaluation consists then in learning
the GMMs parameters and testing them while this position
remains the same. The resulting recognition rates are reported
in Figure 6 (left), and are quite similar to the previous monaural
case. Indeed, as the speakers position remains the same during
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Fig. 6. Study for the same direction for all the speakers. (Left) Mean binaural
recognition ratio with GMMs trained and tested in the same direction as a
function of test duration in second. (Right) Binaural recognition ratio as a
function of the test direction, for SNR = 10dB.

the learning and evaluation steps, no effect of the position
can be brought to the fore. But if the 10 speakers orientation
is changed between the learning and test phases, one can
show that the best performances are obtained only in the
training direction, see Figure 6 (right) for SNR = 10 dB.
Such a phenomenon remains valid for other SNR values. This
clearly shows that the GMMs model both the speaker and the
direction.

2) Same direction for a group of speakers: In order to cap-
ture how the position influences the algorithm performances,
a second scenario has been tested. It consists in forming
3 speakers groups respectively emitting from the 3 angular
positions (Az,El) = {(0◦, 0◦); (0◦, 45◦); (0◦,−45◦)} during
the learning step. Maintaining these same positions during the
evaluations leads to the recognition rates reported in Figure 7
(left). While the method shows good performances, it also
demonstrates the sensibility of the binaural recognition to
speaker situation. Indeed, one can see that better rates are
obtained in Figure 7 (left) than in Figure 6 (left): this can
be explained by the lower number of speakers per direction,
thus reducing the intra-group confusion.

The second experiment consists in regrouping all the 10
speakers into the same position during the testing phase. Note
that this position is chosen as being one of the 3 previously
mentioned or a new one. In this case, the best performances
are obtained in the position (0◦, 0◦), see Figure 7 (right). In
fact, this specific position is central, being the closest place
to the other learned positions. In that sense, it represents the
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Fig. 7. Study for a group of speakers. (Left) Binaural recognition ratio with
GMMs trained and tested in the same direction. (Right) Binaural recognition
ratio with GMMs tested when all the speakers are simulated from the direction
of training of one group. Test duration is indicated in second.

orientation minimizing the position influence, and thus also
minimizing the speaker confusion.

3) One direction for each speaker: This time, one position
is linked to one specific speaker during the learning step. As
ever mentioned, if these positions are the same during the
testing phase, then better results can be obtained if a smaller
number of speaker is associated to one direction. So, results
in Figure 8 (left) could be considered as the best reachable
ratios in this condition (one direction per talker), minimizing
the position influence. But if the speakers position is changed
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Fig. 8. Study for one direction per speaker. (Left) Binaural recognition
ratio with GMMs trained and tested in the same direction. (Right) Binaural
recognition ratio with testing on 3 unlearned directions for all speakers. Test
duration is indicated in second.

during the evaluation step, the algorithm performances dras-
tically decrease (see Figure 8 (right)): this clearly shows that
one has to perform the learning with multiple positions per
talker.

4) Multiple directions for each speaker: In order to mini-
mize the position influence, the GMMs learning is performed
with 10 different directions per talker, covering a large part
of the surrounding space of the binaural head. The resulting
recognition ratios are shown in Figure 9 (left and right). As
before, left Figure is obtained when considering the same po-
sitions during the learning and testing steps. It appears that the
algorithm performances are more sensitive to the SNR value,
and this effect is clearly more obvious in this last scenario. The
same holds when considering the recognition performed from
unknown positions, see Figure 9 (right). But it now appears
that the system is robust to changes in speaker positions, which
is a fundamental property for real life applications. This seems
to indicate that the learning has to be conducted from a lot of
potential positions in order to achieve acceptable performances.
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Fig. 9. Study for multiple learning directions. (Left) Binaural recognition
ratio with GMMs trained and tested in the same multiple directions. (Right)
Binaural recognition ratio with testing on 10 unlearned directions for all
speakers. Test duration is indicated in second.

This is a major major issue intrinsically linked to the binaural
nature of the exploited sensor. From an experimental point of
view, it will make necessary to perform the learning step on
a sufficient position set to obtain valuable and more realistic
performances.

IV. CONCLUSION

A binaural speaker recognition system has been presented
in this paper. It relies on MFCC features and GMM to perform
the identification in noisy conditions. It has been shown that the
speaker positions during the testing step affect the recognition
depending on their gap with the training directions. More
generally, it appears that better performances are produced
when increasing the number of learning directions. We also
showed the advantage of the binaural hearing and its benefits,
being in a world where the humanoid robots become a need
and a highly performing machine. Future works will have other
theoretical and practical aspects: we will use spectral methods
based on the correlation of left and right signals, and will use
a real recorded database for the speaker’s directions, without
passing through simulated HRTFs from monaural signals. We
have conducted such preliminary experiments on real data
in [17], demonstrating the effectiveness of the approach in a
controlled acoustic environment.
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