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Abstract— A theoretically grounded scheme to Direction of
Arrival (DOA) estimation and Source Activity Detection (SAD)
is proposed, on the basis of a pair of microphones. The method
can capture the effects of the robot’s scatterers, if any. The
DOA estimator takes place within a probabilistic framework
and outputs the Maximum Likelihood Estimate (MLE) of the
DOA with respect to the collected audio data. Besides, the SAD
relies on statistical identification. The behavior of the estimator
is studied under various operating modes, considering free-
field propagation and scattering by a rigid spherical head.
Experimental results validate the approach.

I. INTRODUCTION

The estimation of the Direction Of Arrival (DOA) of a
broadband sound source from a pair of microphones has been
widely dealt with. In most contributions, an estimation of the
Time Delay Of Arrival (TDOA) between the microphones is
first performed [1][2]—assuming no reflector nor scatterer—
then the DOA is deduced, up to a front-back ambiguity,
under the free-field assumption. However, in the context
of humanoid robotics, the microphones are mounted on a
head—possibly inside artificial pinnae—so that the free-field
assumption no longer holds. Due to the scattering effect of
the robot’s head and torso, the phase difference between the
two perceived signals is no longer linear w.r.t. frequency,
and the amplitude difference becomes frequency dependent.
Rigorously speaking, TDOA has thus no physical meaning.

Solutions to DOA estimation in the humanoid robotics
context were recently proposed in [3][4], on the basis of the
Interaural Level and Phase/Time Differences (ILD, IPD/ITD)
computed from the recorded signals, together with a Head
Related Transfer Function (HRTF) lookup database. In [5],
the mapping between source positions and theoretical binau-
ral cues is learnt beforehand experimentally from a human-
like dummy head endowed with two microphones.

In this paper, a binaural head samples the wave induced
by at most one broadband source into noise. Under some
probabilistic assumptions, the Maximum Likelihood Esti-
mate (MLE) of the source DOA w.r.t. the collected data is
computed. It entails the transfer function between the two mi-
crophones in order to capture the effects of scatterers. Hence,
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this DOA estimator is asymptotically efficient. Contrarily
to [3][4], it weights the frequency contributions according
to the SNR, so it can be less sensitive to outliers appearing
at low Signal-to-Noise Ratio (SNR) frequencies. In addition,
it can cope with prior information about the environment
noise. The Source Activity Detection (SAD) scheme relies
on the Akaike Information Criterion (AIC) [6][7][8].

The forthcoming Section II introduces the model and
working hypotheses. The DOA estimator and SAD scheme
are then set up in Section III. The behavior of the DOA
estimator is studied in Section IV when the binaural sensor
is in free-field or mounted on a rigid sphere. Tests on real
data recorded in this last scenario constitute Section V.

II. MODEL DEFINITION, WORKING HYPOTHESES

Consider a pointwise sound emitter E and two receivers
R1, R2, possibly laid on a head. Define a frame FR attached
to them, whose center R is the midpoint of [R1R2], and
denote θ a vector of parameters characterizing the position
of E w.r.t. FR. Let hθ stand for the impulse response,
parameterized by θ, between R1 and R2. hθ can capture
head scattering. The signals x1, x2 at R1, R2 write as{

x1(t) = s(t) + n1(t)
x2(t) = (s ∗ hθ)(t) + n2(t),

(1)

where the contribution s of the emitter at R1 and the additive
noises n1, n2 are real, band-limited, individually and jointly
stationary random processes, and ∗ denotes convolution.

The signals x1, x2 are observed over a finite time win-
dow1 IT ,

[
−T2 ,

T
2

]
. Define the set {In}n=1,...,N of N

equal-length non-overlapping segments (or snapshots) cov-
ering IT as In =

[
−T2 + (n−1)T

N ,−T2 + nT
N

]
, n = 1, ..., N .

For j = 1, 2 and n = 1, ..., N , define xj,n, the observation of
xj on In, as the product of xj with a window w symmetric
over its T/N -width support In, i.e.,

xj,n(t) = xj(t)w(t− τn), with τn , −T2 +
(n− 1

2 )T

N . (2)

If s, n1, n2 are zero-mean jointly Gaussian, then the random
processes defined for j = 1, 2 and n = 1, ..., N as

Xj,n(f) =
√

N
T

∫
R xj,n(t)e

−2iπftdt, (3)

are zero-mean jointly (circular complex) Gaussian2.

1Symmetry of IT around 0 simplifies maths with no loss of generality.
2If the zero-mean assumption does not hold but s, n1, n2 can be

considered mean-ergodic (i.e., their time averages over IT converge in
the mean square sense to their statistical expectations as T → +∞), the
problem can still be handled by removing from x1, x2 their time averages
over IT .



For any continuous function of frequency φ(.), φ[k]
henceforth stands for φ[k],φ(kfN ), with fN , N

T , k∈Z.
Define the data vector Z, [X[k1]

′, ...,X[kB ]
′]′, with

k1fN , ..., kBfN the set of B discrete frequencies within
the bandwidth of s, X[k], [X1[k]

′, ...,XN [k]′]′, and
Xn[k], [X1,n[k], X2,n[k]]

′.

Theorem 1. If w is rectangular and C(f), the Power
Spectral Density (PSD) matrix of x1, x2, is smooth enough to
be nearly constant over any N/T -width frequency interval,
then the probability density function (pdf) of Z writes as

pZ(z;C[k1], ..., C[kB ]) =
∏
n,k

CN (xn[k];0, C[k]), (4)

where CN (.;m, P ) terms the multivariate circular complex
Gaussian distribution of mean m and covariance matrix P ,
and z (resp. xn[k]) terms a sample of Z (resp. Xn[k]).

Proof. Define, for j, l∈ {1, 2} and m,n∈{1, ..., N},

Rm,nj,l (f1, f2) , E{Xj,n(f1)Xl,m(f2)
∗}, (5)

with E the mathematical expectation and ∗ the complex
conjugation. Injecting (3) in (5) and using the individual/joint
stationarity of x1, x2 leads to, after some manipulations,

Rm,nj,l (f1, f2) =
N

T
e−2iπ(f1−f2)τn (6)

.
∫
R Cj,l(ν + f2)W (ν)W (f1 − f2 − ν)e−2iπντm,ndν,

with W the Fourier transform of w, Cj,l(f) the jth-row
lth-column element of C(f), and τm,n,τm − τn. If C is
smooth enough to be nearly constant over any frequency
interval whose width is of the order of N/T (i.e., the order
of magnitude of the main lobe width of W ), then

Rm,nj,l (f1, f2)≈ N
T Cj,l(f2)Wm,n(f1−f2)e

−2iπ(f1−f2)τn, (7)

with Wm,n(f) the Fourier transform of w(t)w(t− τm,n).
Since the segments {In}n=1,...,N do not overlap, (7) implies
that Rm,nj,l (f1, f2) is null whatever f1, f2, j, l if m 6=n.
When m=n, if w is taken to be a rectangular window then
under the above assumptions,

Rn,nj,l (f1, f2) ≈ sinc
(
(f1−f2)

T
N

)
Cj,l(f2)e

−2iπ(f1−f2)τn , (8)

with sinc(x) , sin(πx)
πx . Hence, when only integer mul-

tiples of fN are considered, Rn,nj,l (f1, f2) ≈ 0 for f1 6=f2,
whatever j, l. One finally has

Rm,nj,l [k1, k2] ≈
{
Cj,l[k2] if k1 = k2,m = n
0 otherwise, (9)

so that the covariance matrices of X[k] and Z have the
block-diagonal forms CX[k]=blkdiag(C[k], ..., C[k]) and
CZ=blkdiag(CX[k1], ..., CX[kN ]). As uncorrelated Gaus-
sian vectors are independent, Eq. (4) is deduced.

When the noise is spatially white, uncorrelated with s and
has the same PSD σ2[k], k = k1, ..., kB , at each receiver, the
PSD matrix C can be expressed as follows

C[k] = Vθ[k]S[k]Vθ[k]† + σ2[k]I2, (10)

with † the Hermitian transpose operator, S the PSD of s,
Vθ[k] , [1, Hθ[k]]

′, Hθ the Fourier transform of hθ and I2
the 2×2 identity matrix. Note that Hθ comes as the ratio of
the HRTFs to the two microphones (whatever the selected
reference point). The matrix CS [k] , Vθ[k]S[k]Vθ[k]† is
positive semi-definite and rank one, so that C[k] is positive
definite, hence invertible. From (10), one can obtain sufficient
conditions for C to be nearly constant on any N/T -width fre-
quency interval to validate the approximation (7): the band-
widths of s and n must be large compared to N/T , |Hθ|2
must vary slowly on any interval of length N/T , and one
must have maxf |τθ(f)| � T/N , with τθ,− 1

2π
∂
∂f argHθ

the group delay of Hθ. Those conditions extend these
described in [9], and are hereafter assumed to hold.

The log-likelihood of the parameter vector
Θ , [θ′, σ2[k1], ..., σ

2[kB ],S[k1], ...,S[kB ]]′ w.r.t. the
measurement vector Z can now be derived, together with
an information-theoretic SAD scheme.

III. SOURCE LOCALIZATION AND DETECTION

A. Maximum likelihood source localization

Suppose Hθ is known for all θ. The aim is to select
the most likely value of θ given a sample of Z. Taking
the logarithm of (4), one gets for the log-likelihood of
Θ , [θ′, σ2[k1], ..., σ

2[kB ],S[k1], ...,S[kB ]]′:

L(Z;Θ) = c0−N
∑
k

(
ln|C[k]|+tr(C[k]−1Ĉ[k])

)
, (11)

with c0 , −2NBln(π) a constant, tr(.) and |.| the trace and
determinant, and Ĉ[k] , 1

N

∑
nXn[k]Xn[k]

† the Sample
Covariance Matrix (SCM) of x1, x2 at frequency index k.

When S and σ2 are unknown, searching for the maximum
value of L given a sample of Z involves a maximization
procedure over NΘ,Nθ+2B parameters, with NΘ, Nθ the
lengths of Θ,θ respectively. However, it can be shown that
θ̂ML, the vector gathering the first Nθ entries of the max-
imum likelihood estimate Θ̂ML of Θ, can be obtained by
maximizing a function of Nθ variables only, by carrying out
analytically some first-order stationarity conditions3 on L.
This is summarized in the following theorem

Theorem 2. If Ĉ[k] is full-rank whatever k ∈ {k1, ..., kB},
then the MLE θ̂ML is obtained by maximizing

J2(θ) = c2−N
∑
k

(
ln|Pθ[k]Ĉ[k]Pθ[k]+σ̂2

θ[k]P
⊥
θ [k]|

)
, (12)

with Pθ[k],Vθ[k](Vθ[k]†Vθ[k])−1Vθ[k]
† = Pθ[k]

†=Pθ[k]
2

the orthogonal projector onto the space spanned by Vθ[k],
P⊥θ [k] , I2 − Pθ[k] the orthogonal complement of Pθ[k],
σ̂2
θ[k],tr(P⊥θ [k]Ĉ[k]), and c2 , c0 − 2NB.

Proof. The proof is omitted for space reasons. It adapts [10]
to the considered broadband single-source case. The “pseudo
log-likelihood” (12) also appears in [11], though restricted
to free-field propagation.

When the noise covariance matrix satisfies CN [k] =
σ2[k]C̃N [k] 6= σ2[k]I2, with C̃N [k]=SN [k]SN [k]

† some

3These conditions are indeed sufficient to get a maximum of the criterion.



known positive definite matrix, SN [k] its square-root—in
the sense of its Choleski decomposition—, and σ2[k] an
unknown scaling factor, the covariance matrix of X̃n[k] ,
SN [k]−1Xn[k] comes as C̃[k]= Ṽθ[k]S[k]Ṽθ[k]†+σ2[k]I2,
with Ṽθ[k] , SN [k]−1Vθ[k]. Whenever the unknown σ2

is frequency independent, the algorithm must be slightly
modified [11], in that the noise PSD estimate has to be turned
into σ̂2

θ = 1
B

∑
k tr(P

⊥
θ [k]Ĉ[k]). The ML localization steps

are shown in Algorithm 1.

Algorithm 1 The DOA MLE and SAD algorithm

[J2, θ̂ML, d̂AIC ] = LOC_DETECT[x1(IT ), x2(IT ),Vθ, S
−1
N ]

1: Assuming mean-ergodicity of the signals, make x1(IT ), x2(IT )
zero-mean by removing them their time averages over IT .

2: FOR j = 1, 2 DO
3: Using a short-time Fourier transform algorithm (STFT)

based on non-overlapping rectangular windows, compute the
time-frequency representation of xj : Xj,1,...,N [k1, ..., kB ] =
STFT[xj(IT )].

4: END FOR
5: FOR k = k1, . . . , kB DO
6: Define X1,...,N [k] , [X1,1,...,N [k]′, X2,1,...,N [k]′]′.
7: Perform the transform X̃1,...,N [k]=SN [k]−1X1,...,N [k].
8: Compute the Sample Covariance Matrix (SCM):

Ĉ[k]= 1
N
X̃1,...,N [k]X̃1,...,N [k]†.

9: Perform an eigendecomposition of the SCM Ĉ[k]:
[Ũ1,k, Ũ2,k, l1,k, l2,k] = EIG[Ĉ[k]], with l1,k ≥ l2,k.

10: FOR θ = θ1, . . . ,θNθ DO
11: Perform the transform Ṽθ[k] = SN [k]−1Vθ[k].
12: Compute the orthogonal projector onto the space spanned

by Ṽθ[k]: Pθ[k] , Ṽθ[k](Ṽθ[k]
†Ṽθ[k])

−1Ṽθ[k]
†
.

13: END FOR
14: END FOR
15: FOR d = 0, 1 DO
16: Compute the Akaike Information Criterion AIC(d) at d

according to (16)–(17)–(18).
17: END FOR
18: FOR θ = θ1, . . . ,θNθ DO
19: Compute the pseudo log-likelihood at θ according to (12).
20: END FOR
21: Output the MAICE of d: d̂AIC , argmindAIC(d).
22: (if d 6= 0) Output the MLE of θ: θ̂ML , argmaxθJ2(θ).

B. Information-theoretic source activity detection
Define the binary index d by d=1 (resp. d=0) iff the

emitter is active (resp. inactive). The SAD consists in com-
puting the Minimum Akaike Information Criterion Estimate
(MAICE) d̂AIC of d from the measurement vector Z. The
proposed method is related—but not equivalent—to [7][8].

Depending on the value of d, the eigendecomposition
of the PSD matrix C[k] at frequency index k—henceforth
denoted as Cd[k]—writes as

Cd[k] = λkUkUk
†+σ2[k](I2−UkUk†) if d = 1 (13)

Cd[k] = σ2[k]I2 if d = 0. (14)

Therein, Uk is the unit-norm eigenvector of C1[k] as-
sociated with the eigenvalue λk, which spans the so-
called “signal subspace”; UkUk† is the orthogonal projec-
tor onto the signal subspace; I2 −UkUk† is its orthogo-
nal complement, or projector onto the “noise subspace”.

Note that λk − σ2 is the single positive eigenvalue of
CS [k], so λk > σ2. From (13)–(14), a parameter vec-
tor fully characterizing the pdf of Z comes as ρ1 =
[λk1 , ..., λkB , σ

2[k1], ..., σ
2[kB ],U

′
k1
, ...,U ′kB ]

′ for d=1 and
ρ0 = [σ2[k1], ..., σ

2[kB ]]
′ for d = 0. Whatever d ∈ {0, 1}

the log-likelihood of ρd w.r.t. Z is

L(Z;ρd)=c0−N
∑
k

(
ln|Cd[k]|+tr(Cd[k]

−1Ĉ[k])
)
. (15)

For k ∈ {k1, ..., kB}, define l1,k, l2,k as the eigenvalues of
Ĉ[k], ordered such that l1,k ≥ l2,k, and Ũ1,k, Ũ2,k their
corresponding eigenvectors.

Theorem 3. The MAICE d̂AIC is the argument minimizing

AIC(d) = −2L̃(Z; ρ̂d) + 2P (d), (16)

with ρ̂d the MLE of ρd,

L̃(Z; ρ̂d) =
∑
k

ln

 ∏2
i=d+1 l

1
2−d

i,k

1
2−d

∑2
i=d+1 li,k

(2−d)N

, (17)

and P (d) = (d+ 1)B + 4dB − 2dB. (18)

Proof. Injecting (13) into (15) leads to

L(Z;ρ1)=c0−N
∑
k

(
ln(λkσ

2[k])+ 1
σ2[k] tr(Ĉ[k])

−
(

1
σ2[k] −

1
λk

)
tr(Ĉ[k]UkUk

†)
)
, (19)

which is maximized (under Uk†Uk = 1) at ρ̂1 defined by
(see [7]) Ûk = Ũ1,k, λ̂k = tr(Ĉ[k]Ũ1,kŨ1,k

†) = l1,k,
σ̂2[k] = tr(Ĉ[k](I2−Ũ1,kŨ1,k

†))= l2,k, so that

L(Z; ρ̂1) = c2 − 2N
∑
k ln(

√
l1,kl2,k). (20)

Similarly, injecting (14) into (15) leads to

L(Z;ρ0) = c0−2N
∑
k ln(σ

2[k])−N
∑
k

tr(Ĉ[k])
σ2[k] , (21)

which is maximum for σ̂2[k]= 1
2 tr(Ĉ[k])=

l1,k+l2,k
2 so that

L(Z; ρ̂0) = c2 − 2N
∑
k ln
(
l1,k+l2,k

2

)
. (22)

Setting L̃(Z; ρ̂d),L(Z; ρ̂d)−L(Z; ρ̂1)−c2 leads to (17).
Minimizing the negative log-likelihood −L̃(Z, ρ̂d) over d

would favor the model which entails the maximum number
of free parameters. This is why the AIC includes a correction
term depending on the number P (d) of free entries in ρd [6].
In (18), (d+1)B is the number of distinct eigenvalues in the
set {Cd[k1], ..., Cd[kB ]}, 4dB is the number of coefficients
of the complex entries of the signal subspace eigenvectors,
and −2dB is the reduction of degrees of freedom in ρd due
to the normalization of these eigenvectors.

This SAD can also extend to non spatially white noise.



IV. BEHAVIOR OF THE DOA ESTIMATOR

Suppose that the source and microphones lie on a common
plane and that the source is in the farfield, i.e., the source
range r , |RE| is sufficiently high compared to the micro-
phones interspace 2a so that the source wavefronts can be
considered as planar in the vicinity of the microphone pair.
The transfer between the left (R1) and right (R2) sensors
depends, in this case, on a single spatial parameter θ, namely
the angle between the line perpendicular to (R1R2) passing
through R and (RE). In this section, some properties of
the MLE of θ are put forward for two acoustic models: the
free-field propagation and the scattering by a rigid sphere
with two antipodal sensors. Because with these two models
the problem shows a front-back symmetry (θ1 = π−θ2 ⇒
Hθ1 =Hθ2 ), a unique localization cannot be expected if θ
lies within the whole interval ] − π, π] [3]. The range of θ
is henceforth restricted to [−π2 ,

π
2 ].

The statistics of the MLE—in addition to varying with the
observation time—strongly depend on the signal and noise
PSDs. To simplify the discussion, the case where s, n have
flat spectra on a common frequency range is considered,
i.e., S, σ2 are constant on this range. The parameters playing
upon the MLE statistics then boil down to the signal band-
width, its central frequency, and the Signal-to-Noise Ratio
(SNR), defined in dB as SNR , 10log(S/σ2).

The following conclusions are of fundamental importance.

A. Free-field propagation

When there is no head between R1, R2, the noise-free
binaural signals differ only by a time shift, which depends
on θ. More precisely, Hθ(f) = e−2iπf. 2ac sinθ.

Some simulation results are given in Fig.1. The pseudo
log-likelihood (12), normalized so as to lie between 0 and 1
for each true bearing value, is depicted as a function of
true and tested bearings for various signal bandwidths and
SNRs. The data vector Z was randomly drawn according
to (4), and the central frequency was set to 3kHz. Fig.1-left,
for which the SNR was set to 20dB and the bandwidth to
260Hz, depicts the well-known phase ambiguity problem:
when the signal is narrowband (i.e., its bandwidth is small
compared to its central frequency), the pseudo log-likelihood
admits multiple peaks having nearly equal height. Due to
the presence of noise, the highest one does not necessarily
correspond to the true source bearing: the estimation error
pdf is multimodal, and the Mean Square Error (MSE) is quite
large in this mode of operation. When reasoning in terms of
TDOA rather than DOA, the tightest lower bound of the
MSE in this mode is the so-called Barankin bound [12].
Note that the peak corresponding to the true source location
is broader when the source is near ±90◦: bearing estimation
is more accurate when the source is facing the microphone
pair, as acknowledged in [4]. The aforementioned phase
ambiguity vanishes as the SNR rises, as depicted in Fig.1-
center, in which the SNR was raised to 60dB: the main peak
gets sharper as the SNR increases, and the secondary peaks
get lower. Importantly, the narrower the signal bandwidth, the
higher the required SNR to fully disambiguate the problem.

A second way to avoid phase ambiguity is to have a higher
signal bandwidth. This is shown in Fig.1-right, in which
the bandwidth was set to 1kHz. As depicted, the secondary
peaks are strongly attenuated. A third option would be to
increase the observation time. When the SNR, bandwidth
and observation time increase, the estimator’s pdf becomes
unimodal on [−π2 ;

π
2 ] and approaches a Gaussian distribution,

in virtue of the asymptotic properties of ML estimators.
In this mode of operation, the tightest bound of the MSE
is the Cramér-Rao Lower Bound (CRLB). Finally, though
not depicted in the figures, when the SNR and bandwidth
become too small, the estimator’s pdf approaches a uniform
distribution on [−π2 ,

π
2 ], along [12].

Fig.2 shows the influence of the central frequency of
a narrowband signal (90Hz bandwidth) on the distance
between adjacent peaks and their width. As the central
frequency decreases, the peaks broaden and stray from each
other. At 300Hz (Fig.2-right), secondary peaks have totally
disappeared and the system is no longer prone to phase
ambiguity. However, the main peak is quite large at this
frequency, and so is the MSE.

B. Scattering by a rigid sphere

When the microphones are mounted at the antipodes of
a rigid sphere of radius a, the HRTFs to the left and right
channels under farfield conditions are obtained from acoustic
field theory, see for instance [13] for a decomposition on the
basis of Legendre polynomials. Unlike the free-field model,
in which only the phase brings information on the source
position, the amplitude of Hθ contains useful information.

Some simulation results are shown in Fig.3. In Fig.3-left
(260Hz bandwidth, 3kHz central frequency, 20dB SNR), the
effect of ILD information on the pseudo log-likelihood can
be observed. When comparing with Fig.1-left (for which
the conditions of operation are the same), one can see that
secondary peaks are somehow attenuated. It depicts that
ILD contributes to disambiguate—though not totally—the
problem. When the source is close to boresight (0◦), the
pseudo log-likelihood shows little difference compared to the
free-field case. In fact, as the source approaches 0◦, the IPD
tends to be linear w.r.t. frequency, and the ILD approaches
0dB. The effect of the head hence becomes negligible. Note
that, in the same conditions of operation, the pseudo log-
likelihood is narrower near ±90◦ with the spherical head
model. Hence, the estimator is expected to be more accurate
near those DOAs when a spherical head is used. Fig.3-center
(90Hz bandwidth, 340Hz central frequency, 20dB SNR) is
to be compared with Fig.2-right. It shows the low frequency
behavior of the estimator when the head is present. At low
frequencies, the sphere ILD does not vary significantly with
frequency and bearing. Hence the effect of ILD is negligible.
Furthermore, the low frequency IPD can be approximated by
−2iπf 3a

c sinθ. Hence, the behavior of the estimator in this
case is expected to be the same as in the free-field case,
excepted that the frequencies are are scaled by a factor 3

2 .
This explains the differences between Fig.3-center and Fig.2-
right. Fig.3–right, to be compared with Fig.1–right, shows the



Fig. 1. Pseudo log-likelihood for the free-field model. 3kHz central frequency, with: (left) 20dB SNR, 260Hz bandwidth; (center) 60dB SNR, 260Hz
bandwidth; (right) 20dB SNR, 1kHz bandwidth.

Fig. 2. Pseudo log-likelihood for the free-field model. 20dB SNR, 90Hz bandwidth with: (left) 1.6kHz central frequency; (center) 860Hz central frequency;
(right) 340Hz central frequency.

Fig. 3. Pseudo log-likelihood for the sphere model. 20dB SNR with: (left) 3kHz central frequency, 90Hz bandwidth; (center) 340Hz central frequency,
90Hz bandwidth; (right) 3kHz central frequency, 1kHz bandwidth.

Fig. 4. Pseudo log-likelihood for large bandwidth signals sensed at antipodal microphones placed on a rigid sphere, but assuming various propagation
models: (left) mismatch induced by a free-field propagation assumption; (center) mismatch induced by the use of the Woodworth approximation for ITD
and the neglection of ILD variations; (right) matching when the scattering is assumed to comply with the genuine model.



Fig. 5. Experimental results. The ground truth positions (in mm) are
depicted in the sensor frame at three time instants. At each time, a polar
plot of the pseudo log-likelihood is shown.

influence of the head scattering on the pseudo-log-likelihood
for a 1kHz bandwidth 3kHz central frequency signal.

Fig.4 shows the influence of modeling error. Fig.4-left
shows the pseudo log-likelihood for a large signal band-
width when free-field propagation is assumed despite a
spherical head is actually present between the microphones.
Near boresight, modeling error has little influence on the
estimation error, since head scattering is negligible in this
case. However, as the true bearing strays from 0◦, a bias
appears and increases. An erratic behavior is reported when
|θ| > 60◦. In Fig.4-center, the sphere is still actually present,
but the IPD is approximated from the Woodworth ITD
formula [14]: IPD = −2iπf ac (sinθ + θ), and the ILD
variations are just neglected. Although the bias is reduced
compared to Fig.4-left, important errors are still reported
when the source encloses ±90◦. Fig.4-right show the results
when the hypothesized model matches the actual sphere
model.

V. EXPERIMENTAL RESULTS

In order to assess the proposed estimator with real record-
ings, experiments were performed in an acoustically pre-
pared room, equipped with 3D pyramidal pattern studio
foams placed on the roof and on the walls. Two surface
microphones were mounted at the antipodes of a 8.9cm
radius plastic rigid sphere, itself placed on a tripod. The
two microphones outputs were simultaneously acquired at
44.1kHz. The sphere tripod was moved manually with a
wheeled cart while the source, a loudspeaker placed at
the same height as the microphones, was emitting various
types of signals. The true source and sensor positions were
acquired at 200Hz with a motion capture system, providing
a less than 1mm position error. Small infrared active markers
were placed on the sphere and the loudspeaker, so that their
signals could be beamed to three infrared camera units placed
at the corners of the room.

The localization and detection algorithms were as-
sessed on various experiments. Results can be found at
the URL http://homepages.laas.fr/danes/IROS2013/portello-
et-al_videoIROS2013.mp4. Fig.5 shows some of these results
for a white noise source. As shown, the pseudo log-likelihood
exhibits two main peaks, one corresponding to the true

source position, the other one to the symmetric direction
w.r.t. (R1R2).

VI. CONCLUSION

In this paper, a theoretically grounded scheme to DOA
estimation and SAD was proposed, which explicitly takes
into account the scattering effect of the head. The DOA
estimator was studied in simulation for two kinds of models:
the free-field model and the rigid sphere model. In this last
case, it was shown to be more accurate than other model
assumptions. In addition, the ILD entailed in the sphere
model was shown to refine, to some extent, the information
brought by the IPD only. The proposed approach was tested
on real binaural signals from microphones mounted on a
plastic sphere, and validated under clean acoustic conditions.

Ongoing work consist in assessing this instantaneous
detection-localization algorithm into real environments, and
in using it within a stochastic filter for active localization,
along [15]. This is a first step towards a theoretically sound
algorithm enabling the fusion of binaural perception and
sensor motion for any kind of robotics head.

Some proofs were not included for space reasons, but they
can be easily be obtained on request.
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