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Where do I move my sensors?
Emergence of a topological representation of

sensors poses from the sensorimotor flow
Valentin Marcel, Sylvain Argentieri and Bruno Gas

Abstract—This paper deals with the perception of mobile
robotic systems within the framework of interactive perception,
and inspired by the sensorimotor contingencies (SMC) theory.
These approaches state that perception arises from active explo-
ration of an environment. In the SMC theory, it is postulated
that information about the structure of space could be recovered
from a quasi-uninterpreted sensorimotor flow. In a recent article,
the authors have provided a mathematical framework for the
construction of a sensorimotor representation of the interaction
between the sensors and the body of a naive agent, provided that
the sensory inputs come from the agent’s own body. An extension
of these results, with stimulations coming from an unknown
changing environment, is proposed in this paper. More precisely it
is demonstrated that, through repeated explorations of its motor
configurations, the perceived sensory invariants can be exploited
to build a topologically accurate internal representation of the
relative poses of the agent’s sensors in the physical world. Precise
theoretical considerations are provided as well as an experimental
framework assessed in simulated but challenging environments.

I. INTRODUCTION

Space perception is a central issue in mobile robotics.
Indeed, many abilities heavily depend on it as they are
deeply rooted on spatial knowledge: among others, one can
cite trajectory planning [1], obstacle avoidance [2], auditory
and visual sensing [3], etc. Most of these implementations
consider that space is something that exists objectively out
there, and try to exploit it to model mechanical systems,
localize some objects of interest, reach and catch moving
targets, etc. However, space has not to be a pre-established
substrate per se to be able to perform the very same tasks. In
the case of the sensorimotor contingencies theory (SMC) [4],
[5], it is claimed that space is something that an agent may
experience via the determination of sensorimotor invariants
called contingencies. In other words, the discovery at first, and
then the use of such contingencies, is enough to make an agent
realize actions without the need of having an internal, local or
global representation, analytic or not, of space. A. V. Terekhov
and J. K. O’Regan [6] have shown it unambiguously by
learning from the sensorimotor flow an internal function rep-
resenting translations. Since then, this idea has been extended
by Le Clec’H et al. [7] where an agent exploits compensable
sensory changes to build an internal representation of two-
dimensional rigid transformations. The underlying idea of
these works is based on the notion of active compensable
sensory changes proposed initially by Poincaré [8], [9]. Since
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then, substantial works have been dealing with how action
can structure perception [10]–[14], with a focus on Poincaré’s
idea on the notion of space, and more recently with growing
interest in robotics applications. In this vein, Bohg et al. [15]
has introduced the notion of “interactive perception” as the set
of approaches in robotics concerned with the implication of
action in perception.

In this interactive perception framework, robotics ap-
proaches to SMC appear to be more about finding geometrical
properties of space through the exploitation of the sensorimo-
tor flow; these approaches are not, for now, about compensable
transformations as in Poincaré’s intuition, but are still related
to space. Thus, Philipona’s first formalization of the SMC ap-
proach [16] led to the demonstration that an agent can, without
any a priori, infer the so-called “dimension of space”. Further
works like [17] have also shown that, beyond the dimension
of space, it is possible to build a motor internal representation
of the positions occupied by the agent’s end-effector without
external knowledge about its working space. Despite the use of
a curvilinear component analysis (CCA) [18] and the definition
of adapted Hausdorff distances in the agent motor space, this
work lacks a proper mathematical formalization and there
are no clear definitions of the properties or spaces that are
actually captured by the agent. As a solution, the authors
have demonstrated that topological properties of the space
of sensory invariants on a sensitive body can also be well
captured [19]. This work focused on the agent self-interaction
with its own body, whose perception is more deeply analyzed
by Laflaquière in [20] within the SMC theory framework.
Working on the agent’s body was initially envisaged as a
way to put the environment dependency of the representation
aside. Indeed, as formalized later in this paper, the fact that the
environmental state can possibly evolve along exploration has
already proven to be a major theoretical difficulty [17], [21].
This paper proposes to tackle the environment dependency
by generalizing the formalism we initially proposed [19].
Differently from this previous contribution, it is envisaged that
the agent’s end-effector is not sampling its own body anymore
in such a way that all the sensory inputs are dependent to the
environmental state. Along the changes in the environmental
states, it is shown that an agent can undergo, by successive
iterations, a partitioning process of its motor set. Starting from
an unstructured motor set, the agent will build incrementally a
final motor partition which finally forms a good representation
of the external working space initially unknown to the agent.
As such, this refinement process is conducted along the agent’s
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life, through an active exploration of sensory invariant in
changing environments. The approach is similar to Shalizi
and Crutchfield [22] with a spatial version by Capdepuy et
al. [23], where statistics of the sensory stream are exploited
to build a model that best predicts sensory inputs. However,
in the current paper the representation is built without using
prediction but by using naive motor exploration and statistics
of the sensory invariants, which are obtained by hypothesizing
that the agent is only able to detect when two sensations are
equal; no other interpretation of the sensations is actually
required. The idea of measuring spatial distances between
sensors using statistics of uninterpreted sensory inputs has
already been tackled by multiple papers [24], [25], with
different metrics exploiting the sensory distributions in static
environments. In this paper it is shown that, under some
specific hypotheses on the environment dynamical statistics,
the internal representation is topologically equivalent to the
space of sensitive displacements of the sensors.

This paper is organized as follows. Section II is devoted
to the mathematical formalization of the aforementioned re-
finement process of the agent motor set. Additionally to all
the theoretical considerations, a simple example is used all
along the section (and in the rest of the paper) to illustrate
this process and its limits. Section III introduces some formal
considerations on the topological and metrical structures in
the sets obtained during the refinement process but also some
criteria to evaluate how the topological structures are preserved
in an internal representation. The theory is then exploited in
Section IV to propose an experimental and probabilistic frame-
work for building this internal representation. Simulations are
conducted in Section V to carefully evaluate this framework.
Finally, a conclusion ends the paper.

II. THE REFINEMENT PROCESS: PARTITIONING OF THE
MOTOR SPACE THROUGH SENSORY INVARIANTS

A. Characterization of the motor space

1) Refinement of the motor space: Let’s first consider a
naive agent, be it virtual or robotic, that can interact with
its environment by generating motor commands that act on
the agent actuators states (i.e. joint angles, positions, etc.).
Each state is called a motor configuration m and lies in the
motor configuration set M. The agent is also endowed with
sensors placed on its body parts. These sensors inform the
agent about the environment’s physical state they are sensitive
to, thus generating a sensory input s ∈ S, with S the sensory
set. An environment’s physical state is called an environmental
state ε ∈ E where E is the set of all possible environmental
physical states, possibly infinite. It is also assumed that there
exists a deterministic function Ψ, often referred to as the
sensorimotor law [16], that links the motor configuration state
m, the environmental state ε and the sensory input s as

s = Ψ(ε,m) = Ψε(m). (1)

Note that time does not appear in this equation. Indeed, the
environmental state ε is assumed to capture time changes in
the environment, while the sensory input s is hypothesized
to instantaneously reach its final value. Therefore, for a fixed

environmental state, the sensory input is solely governed by the
motor configuration m. Because of the possible redundancies
in the agent kinematics, the function Ψε(.) is possibly non-
injective. It means that, at ε, two different motor statesm1 and
m2 can lead to the very same sensory input s = Ψε(m1) =
Ψε(m2). As outlined in our previous work [19], one can then
define an equivalence relation =Ψε , such that

m1 =Ψε m2 ⇔ Ψε(m1) = Ψε(m2). (2)

Thus, one can regroup all the motor states leading to the same
sensory state in their equivalence class [m]=Ψε

= [m]ε =
{r ∈ M|r =Ψε m}. It is well known that the set of all
equivalence classes forms a partition 1 of the set on which the
equivalence relation is defined. In other words, every element
inM is included in one and only one equivalence class [m]ε.
This partition is called the quotient set M/ε = {[m]ε|m ∈
M}. It forms a refinement of the trivial partition {M}, i.e.
the set M is split into equivalence classes of M/ε.

Consider now that the environmental state has switched
from ε to ε′. Then the agent has access to a new equivalence
relation =Ψε′

, that leads to a new motor set partition M/ε′ .
Because the environment has changed, the new equivalence
relation and motor partition are possibly totally different
from their counterpart in the previous environment. Therefore,
one can define a new multi-environment equivalence relation
=Ψ(ε,ε′)

such as

m1 =Ψ(ε,ε′)
m2 ⇔

m1 =Ψε m2

and
m1 =Ψε′

m2

 . (3)

According to its definition, this equivalence relation leads
to equivalent classes [m](ε,ε′) = [m]ε ∩ [m]ε′ verifying
[m](ε,ε′) ⊆ [m]ε and [m](ε,ε′) ⊆ [m]ε′ , i.e. the quotient set
M/(ε,ε′) is a refinement of both quotient setsM/ε andM/

ε′
.

Note that this multi-environment equivalence relation =Ψ(ε,ε′)

does not depend on the order of ε and ε′. Consequently, the
tuple (ε, ε′) can be written as a subset E = {ε, ε′} of E . Based
on the idea that intersecting partitions obtained on multiple
environments gives a finer partition, one can then define the
generic multi-environment equivalence relation =ΨE , for any
subset E ⊆ E , as

m1 =ΨE m2 ⇔ Ψε(m1) = Ψε(m2),∀ε ∈ E. (4)

Equality of sensory inputs must be valid for all environmental
state in E, therefore, by indexing the obtained sensations
by the corresponding environmental state, relation (4) can be
rewritten as

m1 =ΨE m2

⇔ {(ε,Ψε(m1)) ; ε ∈ E} = {(ε,Ψε(m2))); ε ∈ E}
⇔ ΨE(m1) = ΨE(m2),

(5)

where the function

ΨE(m) = {(ε,Ψε(m)); ε ∈ E} ∈ SE (6)

1A partition of a set X is a set of non-empty, pairwise disjoints, subsets
whose union forms the set X itself.
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maps each motor configuration to its respective indexed sen-
sory set acquired along the experience of all environmental
states ε ∈ E and SE is the set of all possible indexed sensory
sets obtained from E. Experiencing new environmental states
always give a more refined partition. Then, considering the
extreme case where E = E , it is clear that M/E is the finest
partition the agent can have access to. Indeed, it is made of
the finest equivalence classes that can ever be distinguished
from a sensory input during the refinement process. From the
agent’s point of view, these sets of sensor poses are sensory
equivalent but an outside viewer might distinguish them as
different poses in space. These finest equivalence classes will
be called sensitive poses in all the following. As shown later,
they might be closely related to the notion of points in the
physical space.

2) Illustrative example: All the aforementioned consid-
erations were mainly theoretical. Let’s now illustrate these
points by using a very simple simulated robot agent made
of one serial arm composed of two parts of identical length
controlled by two revolute joints moving in a plane, see
Figure 1. The end-effector of the system is endowed with a
single-pixel camera which is only sensitive to illumination in
such a manner that it can only send two values: s = 0 if
the illumination is zero and s = 1 otherwise. The system
is driven by two motor commands θ1 and θ2, which are
supposed to represent directly the two joint angles, so that
by convention θ1, θ2 ∈ [−π, π[ (θ1 = θ2 = 0 makes the
arm horizontal). Suppose now that the environment is made
of one black and one white areas separated by a straight line,
as depicted on top of subfigures 1(a) and 1(b). Of course, the
agent does not have access to this information and can only
rely on its sensorimotor flow, i.e. variations of θ1, θ2 and their
sensory consequences. At the very beginning, the set of all
motor commands m = (θ1, θ2) ∈ M = [−π, π[2 have not
been distinguished from each other so that the current finest
motor partition is {M}. After having explored one black-and-
white environment, the agent is able to obtain a finer motor
partition. Indeed, two equivalent classes can easily be formed
by regrouping all the motor commands m giving the same
sensation, namely, for an environmental state ε, [m0]ε for
s = 0 and [m1]ε for s = 1. Then, the set {[m0]ε, [m1]ε}
forms a partition of the set {M}, which can be represented
as two separated points, see Figure 1(d). This partition is also
colored directly in the motor set in Figure 1(a). Of course this
partition is environment dependent, which is captured in the
formalization with a dependency to the environmental state ε
in the equivalence relation =Ψε . This dependency has been
discussed in many publications [16], [17], [21], [26], and no
clear solutions have been proposed so far to deal with this
environment variability. In these works, the environment is
systematically considered static, and they often restrict their
study to cases where the environment changes do not influence
the sensorimotor flow (by working on the agent body, for
instance, like in [19] and [27]).

However if the environmental state changes to a new state
ε′ (corresponding to a new black-and-white separation of
the robot’s pose space, as shown in Figure 1(b)), then it
is possible that previously inseparable motor configurations

(regrouped in one equivalence class) are now generating
different sensations. Considering this new environmental state
ε′ alone, it is clear that the agent can partition its motor set
into two equivalence classes [m0]ε′ and [m1]ε′ , thus leading
to a new motor partition shown in Figure 1(b). Remembering
the previous partition, the agent can now build a finer partition
for having sequentially experimented the environmental states
ε and ε′. The resulting multi-environment partitioning can
be easily deduced in this case, and is shown in Figure 1(c).
In this intuitive example, the agent is now able to separate
the equivalence class [m0]ε, which relates to all the motor
configurations giving the same 0 sensation value for the
environmental state ε, into two new subsets that are denoted
[m00]E = [m0]ε∩[m0]ε′ and [m01]E = [m0]ε∩[m1]ε′ , with
the set E = {ε, ε′}. [m1]ε is also partitioned in two subsets
[m10]E and [m11]E . Following the colors used in Figure 1(c),
one can then illustrate this refinement with the down arrows
in Figure 1(d).

If the experiment is reproduced, then the multi-environment
partition will again be refined, with all the equivalence classes
being more and more partitioned into smaller subsets. The
refined sets would then show a monotonically growing number
of points along with the number of environmental states
observed. In this example, there is an infinite number of
environment states that the agent can interact with so that the
number of points shall tend to infinity: all the equivalence
classes can always be further partitioned with a new specific
environment. However, by considering the case where the
agent has interacted with all possible environmental states
(in fact, it is not a reasonable consideration as the empirical
version of the process may only give at most a countably
infinite number of experiences) one obtains a case where the
equivalence classes are not refinable and can be considered as
points, called the sensitive poses. But what are these sensitive
poses in the actual physical space?

B. From the motor quotient set to the sensor pose

So far, the previous section has highlighted the only two sets
the agent can be aware of: the motor configuration setM and
the sensory set S, where its motor states and sensory inputs
respectively lie. Both sets are linked together through the
sensorimotor law Ψ unknown to the agent. From an external
point of view, the sensory input s ∈ S is generated by
rigid sensors whose spatial state in the world can be entirely
described by their pose in the world: x ∈ X , with X the
sensors pose set. Let’s focus on this new set and highlight the
links between X , M and S.

1) Definition of the sensor pose set: It is well known
in robotics that the forward kinematics function f , which
accounts for the relative movements allowed at each joint, is
dependent on the geometry of the robot, is a function linking
the motor statem to the corresponding sensors pose x, usually
in Euclidean space, so that x = f(m). The pose set X is
built such that f is surjective, i.e. all sensor poses can be
obtained from a motor configuration in M). In general, the
pose x—which is a parameterization of the sensors spatial
state in the physical world—refers to the sensors positions
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(d) Motor set refinement.

Fig. 1. Illustration of the refinement process. (Top) The 2D serial agent with 2 degrees of freedom and the single-pixel camera (red) and its pose space
(circle). (Bottom) Motor equivalence classes represented in the motor configuration set M. (a) The agent is in an environment made of black and white areas
parameterized by its state variable ε. The agent is only able to split its motor set in two parts, i.e. two equivalence classes [m0]ε and [m1]ε respectively
related to the sensory inputs: s = 0 (black) and s = 1 (white). (b) The same applies for the new environment configuration ε′. (c) When remembering the
environmental states {ε, ε′}, the agent obtains 4 equivalence classes represented with 4 shades of gray: black is for the indexed sensory set {(ε, 0), (ε′, 0))},
dark gray is for {(ε, 0), (ε′, 1))}, light gray is for {(ε, 1), (ε′, 0))} and white for {(ε, 1), (ε′, 1))}. (d) Then, the initial two equivalence classes ([m0]ε and
[m1]ε) built when experiencing the environmental state ε can be partitioned again in 4 subsets after experiencing a new state ε′.

and their orientations relatively to the frame of the agent’s
body. The sensors poses are externally defined thus not directly
accessible by the agent. The sensory input is thus linked to
the spatial state of the sensors through the forward sensory
function φε, so that s = φε(x). In the end, the sensorimotor
law Ψε can be written as the composition Ψε = φε ◦f , which
is summarized by the diagram

M X S

Ψε

f φε
. (7)

Introducing X is a convenient way to understand how the
motor refinement, outlined in § II-A1, is related to space. Fol-
lowing the same ideas, one can define an equivalence relation
for two poses. It is noteworthy that the two functions f and φε
are possibly non-injective. This means that two different motor
configurations can lead to the same sensors pose (i.e. the non-
injectivity of f captures the agent kinematics redundancy) and
in a specific environment state ε two different sensors poses
can lead to the same sensory state (i.e. the non-injectivity
of φε captures the environmental redundancies but also the
sensors possible symmetries). In the vein of Equation (2), for
any ε ∈ E , one can again define an equivalence relation =φε

for two poses with

x1 =φε x2 ⇔ φε(x1) = φε(x2). (8)

Thus, one can regroup all the sensor poses leading to the same
sensory state in their equivalence class

[x]ε = {r ∈ X ; r =φε x}. (9)

Then, the quotient set X/ε = {[x]ε;x ∈ X} forms a
refinement of the trivial partition {X}. By generalization over

multiple environmental states, one can then define the multi-
environment equivalence relation =φE for any subset E ⊆ E
defined as

x1 =φE x2 ⇔ φε(x1) = φε(x2),∀ε ∈ E
⇔ φE(x1) = φE(x2),

(10)

where the function

φE(x) = {(ε, φε(x)); ε ∈ E} ∈ SE (11)

maps each sensor pose to its respective indexed sensory set
acquired along the environmental states in E. The equiva-
lence relation =φE can be understood as: two poses are said
equivalent after having seen all environments in E ⊆ E
if the sensory inputs they have generated are equal for all
environmental states in E. These poses can then be regrouped
in an equivalence class

[x]E = {r ∈ X ; r =φE x}. (12)

The set of all equivalence classes is the quotient set X/E . Like
before, the extreme case where E = E is of particular interest.
Indeed, X/E is made of equivalence classes which can not
be further fragmented into subsets, thus defining the sensitive
pose set. It is interesting to see that the set of elements of X
is in fact a refinement of X/E . This highlights the fact that
there might exists some subsets of positions and orientations
in the sensor’s pose set that can never be distinguished from
sensory inputs. Then, from an internal point of view using the
sensorimotor flow, the agent will never be capable to separate
those ambiguous subsets and is unable to represent the whole
pose set X .

2) Interlink between M/E and X/E: So far, two quotient
sets have been introduced: (i) the motor quotient set M/E
which can be built directly from the sensorimotor flow and by
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interaction between the agent and its environment, and (ii) the
quotient pose set X/E which captures sensor poses that have
not yet been distinguished from sensory inputs. For each point
in X/E corresponds a unique set of indexed sensations. The
map f being surjective, all poses have been obtained from a
motor configuration inM. Therefore, the same set of indexed
sensations has also been generated from a unique equivalence
class inM/E . It then follows that there is a bijection between
the sets X/E and M/E and the set of generated indexed
sensations. Then, from an external point of view, the link
between all the sets defined so far can be subsumed by the
following diagram

M X SE

M/E X/E

ΨE

f

πME

φE

πXE

f/E
φE/E

, (13)

where f/E represents the unique bijective map mapping
together equivalence classes from M/E to X/E . πME and
πXE both represent the canonical projections from points to
equivalence classes. Consequently, the agent can exploitM/E
as an internal representation of X/E . Furthermore, letting
E = E means then that the agent has experienced all the
possible environmental states, i.e. each finest equivalence class
in X/E is equivalently represented by a finest equivalence
class in the internal representationM/E . These considerations
are illustrated in the following subsection.

3) Illustrative example (cont’d): Let’s come back to the
previous illustrative example, where a 2-DOF robot arm ex-
plores a black-and-white environment. In this simple case:
• the environmental state ε can be described by a straight

line delimiting the pose space in two areas together with
a binary value indicating which one is black;

• the agent’s motor configuration set M is made of
the set of the two joint angles θ1, θ2 so that M =
{(θ1, θ2); θ1, θ2 ∈ [−π, π[};

• the forward kinematics function f gives the end-effector
position (x, y) ∈ X ⊂ R2 as a function of θ1, θ2 with x =
L(cos θ1+cos(θ1+θ2)) and y = L(sin θ1+sin(θ1+θ2)),
where L is the length of both arm parts;

• the sensor, placed at (x, y), delivers a sensory input2 s =
φε(x, y) ∈ S = {0, 1}.

The agent is there endowed with a point sensor, so a pose
x in X is nothing else but a point in a 2D Euclidean space.
Since two distinct points in the 2D Euclidean plan can always
be separated by a straight line, equivalently for two distinct
poses in X , there always exists an environmental state ε ∈ E
for which the corresponding sensations are distinct. Then, for
a given pose x, the equivalent class [x]E regrouping all the
poses that always give the same sensations for all ε ∈ E
is just the singleton [x]E = {x}. This means that the finest
partition X/E of the pose set is the set of points in X , i.e.
X/E = {{(x, y)}, (x, y) ∈ X}.

2In the particular case where the sensor is placed exactly on the straight
line splitting the working space in two areas, it is arbitrary chosen that s = 0.

Following the same ideas, it is clear that the equivalence
classes in the motor configurations setM are the set of motor
configurations leading to a same and unique pose through
the forward kinematics function f . Consequently, the finest
partitionM/E is made of equivalence classes [m]E individu-
ally corresponding to one equivalence class [x]E = [f(m)]E .
However, the finest equivalence classes inM/E have a unique
corresponding point in X/E , which have been shown to
represent points in the 2D Euclidean pose space. Then, without
knowledge on the forward kinematics function f—and through
a refinement strategy—the agent can build the setM/E which
captures kinematics redundancies and constitutes a very good
candidate for representing the actual space of Euclidean poses.

All these considerations are represented in Figure 2. The
pose space is represented in the left, where each pose can
be reached by the agent from one or multiple motor con-
figurations due to the kinematics redundancy. For instance,
the pose x1 (resp. x3) can be reached by the 2 different
motor configurations m1 and m2 (resp. m3 and m4) in
M. The same applies for the pose x5 located at the limit
of the pose, which can be obtained with a unique motor
configuration m5. Another particular case is the pose x6

obtained when the sensor is exactly in the center of the pose
space, which can be reached with all motor configurations
m = (θ1, θ2) such that θ2 = −π, thus building the set
M6 ∈M. As explained above, each of these poses is linked to
an equivalent class inM/E once the agent has experienced all
the possible environmental states ε in E . For instance, the two
motor configurations m1 and m2 (resp. m3 and m4) can be
regrouped in the equivalent class [m1]E = {m1,m2} (resp.
[m3]E = {m3,m4}) in M/E . Then, one can see on this
illustration that each indivisible equivalent class obtained on
the finest partitionM/E forms a sensitive pose, each of them
being associated to a unique pose in the pose space, i.e. a point
in the 2D Euclidean space. Thus, the agent knows for instance
that any motor configuration selected in M6 will correspond
to a sensitive pose point [m6]E (with m6 ∈ M6) and so to
a unique pose in the sensitive pose set. In that sense, one can
qualitatively understand that the finest refinement represents
the kernels of the forward kinematics function.

From the mathematical formalism previously proposed, one
seems to have definitely concluded on the way an agent can
refine its motor configurations from the set of sensory inputs
generated during the environment exploration. However, the
equivalence classes have been defined very intuitively by intro-
ducing a somewhat sequential exploration of the environmental
states. Moreover the environment is possibly continuous with
an uncountable number of environmental states and the agent
can not experience all of them. From the agent’s point of view,
the environmental states it can experience can been considered
as a statistical sample of the set of all environmental states. In
order to generalize the agent experience one needs to change
the current deterministic framework and introduce statistical
properties on the set of environmental states. Indeed, if some
sensory distinction between two motor configurations have
a zero probability to occur, then these configurations must
be considered equivalent from the agent point of view. This
allows us to extend the formalism to observable/unobservable
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x3
<latexit sha1_base64="xUGFCLACrs2J8tg6OVQaGaxqT6w="></latexit>
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[m3]E
<latexit sha1_base64="lzWKMC35C4tlK131a8H5jyvtzu4="></latexit>

[m6]E
<latexit sha1_base64="+zBSCkzYNyWIRnfoF73+AKCz7xI="></latexit>

m1
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m2
<latexit sha1_base64="7sveMqHKYjuOGBDkA/WrJnpi+NU=">AAADAXicjVJLS8NAGBzjq9ZX1aOXYBE8lbQKeix68VjBqmBFkrjVYF5sNqIUT/4Hr3r1Jl79Jf4DvfkTnF1T8IGPDUlm55v5dmdZLw2DTDnO04A1ODQ8MloaK49PTE5NV2Zmd7Ikl75o+0mYyD3PzUQYxKKtAhWKvVQKN/JCseudbuj67pmQWZDE2+oiFQeRexwH3cB3FalOR4lz5XV70eVh47BSdWqOGfZ3UC9AFcVoJZVXdHCEBD5yRBCIoYhDuMj47KMOBym5A/TISaLA1AUuUaY3p0pQ4ZI95feYs/2CjTnXPTPj9rlKyFfSaWORnoQ6SaxXs009N501+1Pvnump93bBv1f0isgqnJD9y9dX/tensyh0sWYyBMyUGkan84suuTkVvXP7QyrFDik5jY9Yl8S+cfbP2TaezGTXZ+ua+rNRalbP/UKb4+XXdP0kktUuX70zm/oyr0T96wX4DnYatfpyrbG1Um2uF5ejhHksYIk3YBVNbKKFNldMcY0b3FpX1p11bz28S62BwjOHT8N6fAMup56S</latexit>

m5
<latexit sha1_base64="LEyjc7381nviRoiTAjMSAeaR7UA=">AAADAXicjVK5TsNAFBzMHa4AJY1FhEQVORyCEkFDCRJJkAhCttmAhS+t14goouIfaKGlQ7R8CX8AHZ/A7OJIHOJYy/bsvJm3O6v10jDIlOM89Vn9A4NDwyOjpbHxicmp8vRMI0ty6Yu6n4SJ3PfcTIRBLOoqUKHYT6VwIy8UTe9sS9eb50JmQRLvqU4qDiP3JA7age8qUq2WEhfKa3ejy6PVo3LFqTpm2N9BrQAVFGMnKb+ihWMk8JEjgkAMRRzCRcbnADU4SMkdoktOEgWmLnCJEr05VYIKl+wZvyecHRRszLnumRm3z1VCvpJOGwv0JNRJYr2abeq56azZn3p3TU+9tw7/XtErIqtwSvYvX0/5X5/OotDGuskQMFNqGJ3OL7rk5lT0zu0PqRQ7pOQ0PmZdEvvG2Ttn23gyk12frWvqz0apWT33C22Ol1/T9ZJIVtt89c5s6ku8ErWvF+A7aCxVa8vVpd2VysZmcTlGMId5LPIGrGED29hBnSumuMYNbq0r6866tx7epVZf4ZnFp2E9vgE2XZ6V</latexit>

m3
<latexit sha1_base64="qAAdZTBufOGZ4Q40csNkdkGqxFk=">AAADAXicjVJLS8NAGBzju76qHr0Ei+CppCrosejFo4JVwYokcVtD82KzEUvx5H/wqldv4tVf4j/Qmz/B2TUFH/jYkGR2vplvd5b10jDIlOM8DViDQ8Mjo2PjpYnJqemZ8uzcfpbk0hcNPwkTeei5mQiDWDRUoEJxmErhRl4oDrzOlq4fnAuZBUm8p7qpOI7cdhy0At9VpJpNJS6U1+pFlyerJ+WKU3XMsL+DWgEqKMZOUn5FE6dI4CNHBIEYijiEi4zPEWpwkJI7Ro+cJApMXeASJXpzqgQVLtkOv23Ojgo25lz3zIzb5yohX0mnjSV6EuoksV7NNvXcdNbsT717pqfeW5d/r+gVkVU4I/uXr6/8r09nUWhhw2QImCk1jE7nF11ycyp65/aHVIodUnIan7IuiX3j7J+zbTyZya7P1jX1Z6PUrJ77hTbHy6/p+kkkqy2+emc29SVeidrXC/Ad7K9Ua6vVld21Sn2zuBxjWMAilnkD1lHHNnbQ4IoprnGDW+vKurPurYd3qTVQeObxaViPbzE5npM=</latexit>

m4
<latexit sha1_base64="4RyUhxWB/ZkkFIRGEQX8w/YhIKc=">AAADAXicjVLJSsRAFCzjPm6jHr0EB8HTkFFBj6IXjwrOAjMiSezRYDY6HVEGT/6DV716E69+iX+gNz/B6jYDLrh0SFJdr+p1V9NeGgaZcpynAWtwaHhkdGy8NDE5NT1Tnp1rZEkufVH3kzCRLc/NRBjEoq4CFYpWKoUbeaFoeqfbut48EzILknhfXaTiIHKP46Ab+K4i1ekoca68bi+6PFw7LFecqmOG/R3UClBBMXaT8is6OEICHzkiCMRQxCFcZHzaqMFBSu4APXKSKDB1gUuU6M2pElS4ZE/5PeasXbAx57pnZtw+Vwn5SjptLNGTUCeJ9Wq2qeems2Z/6t0zPfXeLvj3il4RWYUTsn/5+sr/+nQWhS42TIaAmVLD6HR+0SU3p6J3bn9IpdghJafxEeuS2DfO/jnbxpOZ7PpsXVN/NkrN6rlfaHO8/Jqun0Sy2uWrd2ZTX+KVqH29AN9BY6VaW62u7K1VNreKyzGGBSximTdgHZvYwS7qXDHFNW5wa11Zd9a99fAutQYKzzw+DevxDTPLnpQ=</latexit>

… M6

M/E
<latexit sha1_base64="DD1wnL2OYRaGrjFp9ysgrsFvVWY="></latexit>

Fig. 2. Illustration of the link between X , M and M/E for the simple example used in the paper. (Left) Pose set, with the single-pixel camera represented
as a square. (Middle) Motor configuration set. (Right) Sensorimotor representative set, i.e. the finest partition of the motor set. In the end, and for the finest
motor representation, each finest equivalence class [mi]E in M/E represents only one point in the agent pose space X .

events using the probability and measure theory.

C. On the observability of the finest refinement

1) Formalism: Because the number of possible environ-
mental states is possibly uncountable, one needs to properly
define the probability space of interest (see [28] as a reference
on probability and measure). Let’s take E as the sample space
and its power set P(E ) as the σ-field or set of events. P(E )
is composed of all possible subsets of environmental states
the agent can interact with. Let’s assume that there exists a
probability measure P from a subset of environmental states
E ∈ P(E ) to [0, 1] that represents the probability for the
agent to interact with an environmental state inside E. If a
subset E has a probability measure P (E) > 0 then it is
called observable, meaning that there is nonzero probability to
observe at least one element of it. Therefore, one could derive a
new definition of the finest sensory equivalence classes on the
basis on this probability measure. Indeed, let’s consider two
poses and E the set of environmental states that make them
generate distinct sensations. E might be empty, finite or even
infinite, but if the measure P (E) = 0, then the probability
to observe an environmental state that distinguish both poses
is 0. In other terms, the sensory distinguishability of such
poses is unobservable by the agent. Then, one can extend the
concept of sensitive poses to observable sensitive poses. From
the probability measure P on the set of environmental states
E , lets =P be the new equivalence relation such that, for any
pair xi, xj ∈ X of poses,

xi =P xj ⇔ P ({ε ∈ E ;xi 6=φε xj}) = 0. (14)

This equivalence relation can be interpreted as: in order for two
poses to be in the same equivalence class, it suffices that the
probability to observe an environmental state that separates
them is zero. Let’s now denote by X/P = {[x]P ;x ∈ X}
the observable sensitive pose set made of the equivalence
classes given by the equivalence relation =P . From an external
point of view, X/P is the finest set of points that can be
observed from the sensorimotor flow; it is thus all that can
be represented by the agent. Obviously, one can also define

the equivalence relation on the set of motor configurations to
obtain the agent internal representation

mi =P mj ⇔ P ({ε ∈ E ;mi 6=Ψε mj}) = 0. (15)

And define M/P = {[m]P ;m ∈ M} as the internal
representation. With the same considerations than in §II-B2,
M/P has the same number of points than in X/P . All these
properties can be subsumed in the following diagram

M X

M/P X/P

f

πMP πXP

f/P

(16)

where f/P denotes the bijection that maps the equivalence
classes together, i.e. f/P : [m]P → [f(m)]P for any m ∈
M. πMP and πXP both represents the two canonical projections
from points to equivalence classes.

2) Illustrative example (cont’d): Let’s apply these new
considerations to the previous example. Considering Figure 2,
if one takes two separated poses in the pose space and chooses
at random a straight line intersecting with the pose space,
the probability to have a sensory difference between them is
different from 0. Indeed, if the distribution of straight lines
intersecting with the pose space is uniform, there is non-null
probability to separate two distinct points with this straight
line. Therefore, the sensitive pose set X/E and the observable
sensitive pose set X/P are identical. Moreover, the probability
measure P qualitatively gives a notion of distance between
poses, the farther they are, the higher is the probability to
distinguish them because the subset of environmental states
that separates them is bigger.

The next section investigates how the probability measure
P gives a structural information on the internal representation
and how it is related to the structure of the physical space.

III. INTRODUCING STRUCTURAL CONSIDERATIONS INTO
THE MATHEMATICAL FORMALISM

So far, it has only been shown that a refinement process
allows the agent to obtain a set of points M/P in bijection
with the set of observable sensitive poses in the set X/P . Until
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now, the representation is correct if the internal representation
captures the observable sensitive points. However, in order to
be exploitable, the agent should also be able to represent the
continuity of movements in the physical space. Yet, there is no
guarantee that close points in X/P are represented by close
points in M/P . These considerations are carefully addressed
in the following subsections.

A. Sensorimotor structures on the quotient spaces

From a mathematical point of view, X/P and M/P have
been described as sets, and not spaces. Transforming these
two sets into spaces requires the introduction of some addi-
tional structure. In fact, it is possible to derive an intrinsic
dissimilarity measure between the points of these sets as they
can be linked together by the probability measure P on the
set E . Indeed, let’s consider any pair of poses xi,xj ∈ X .
Then from the probability measure P , one can derive the
probability p(xi,xj) for the event “experience an environment
generating two different sensations at xi and xj”. This can
be formalized by splitting up the set of environmental states E
in two complementary subsets Eij and Ecij , with Eij the set
of environmental states such that ∀ε ∈ Eij , φε(xi) 6= φε(xj).
Then, using P , the aforementioned probability is given by
p(xi,xj) = P (Eij). Consequently, if p(xi,xj) = 0 then the
poses are equivalent and xi =P xj . Importantly, it is proven
in Appendix A that p is a pseudometric on X . Because p is
a pseudometric, distinct points in X may have a distance p
equal to 0. However, in the quotient set X/P these points
are reduced in the same equivalence classes. Therefore, the
pseudometric p induces a metric p∗ on the quotient set X/P
defined as p∗([xi]P , [xj ]P ) = p(xi,xj).

Equivalently, one can define the probability σ for pairs
of motor configurations mi,mj ∈ M to observe an en-
vironmental state that generates different sensations with
σ(mi,mj) = p(f(mi), f(mj)) = P (Eij). σ is called the
sensory dissimilarity, it is also a pseudometric on M and
it induces a metric σ∗ on the quotient set M/P defined
as σ∗([mi]P , [mj ]P ) = σ(mi,mj). Therefore, it appears
the agent can actually build a metric space (M/P , σ

∗) by
exploiting the refinement process highlighted in the previous
section. Moreover, the bijective map

(M/P , σ
∗) (X/P , p∗)

f/P (17)

has the following property: σ∗([mi]P , [mj ]P ) =
p∗(f/P ([mi]P ), f/P ([mj ]P )). Therefore it is an isometry
and both spaces are linked together by a distance-preserving
transformation.

One has to keep in mind that the metric structures induced
by the probability measure P are inherited from the statistics
of sensorimotor invariants. Consequently, they are empirical
because built directly from the observable sensorimotor expe-
rience, i.e. from the comparison of sensations along the agent
life. These empirical structures, as defined previously, are not
arbitrary but are an intrinsic property of the sensorimotor
experience of the agent. Based on previous considerations,
the space (M/P , σ

∗) is metrically equivalent to the space
(X/P , p∗), however, does this empirical structure respect the

continuity of the physical world? If not, the agent should
not have any interest in building (M/P , σ

∗) as it would not
constitute a good representation of the world. This specific
point is addressed in the next subsection.

B. Natural topology: towards a good representation respect-
ing continuity of the physical world

Before dealing with the notion of a “good representation
of the world”, one needs to introduce natural structures in
the considered spaces. Here, “natural” refers to the structures
which are directly induced by intrinsic properties of the phys-
ical world in which the agent is embedded such as continuity.
Indeed, the displacements of the agent sensors are hypothe-
sized as being continuous in time and space. Therefore one
can endow respectively the motor setM and pose set X with
topological structures τM and τX such that τM guarantees
the continuity of action and τX the continuity of the forward
kinematics function f(.), with f : (M, τM)→ (X , τX ).

So, it appears that the quotient pose set X/P can be
endowed with two different topological structures:
• the one induced by the quotient of (X , τX ) (i.e. the

quotient topology), which captures its natural topology;
• the one induced by the metric p∗, which is empirically

obtained by the agent through sensorimotor experience.
Since one wishes the empirical topology to represent the
continuity of the physical world, both topological structures
must be equivalent. Under the following two hypotheses, it
is proven in Appendix B that these two structures on the
quotient set X/P are indeed topologically equivalent.

(H1) The probability p is a continuous property of the physical
space, or equivalently p is a continuous map from X ×X with
the product topology to R≥0.
(H2) The agent’s motor configuration space (M, τM) is
compact.

Additionally, since relation (17) states that M/P and X/P
with their empirical structures are homeomorphic, then the
quotient motor space M/P with the empirical structure is
topologically equivalent with the space X/P endowed with
the natural structure. Thus, (M/P , σ

∗) can be considered to
be a good topological representation of X/P respecting the
physical continuity.

Now that we have stated the hypotheses under which the
agent might be interested in building M/P , let’s focus in the
next section on how to perform the refinement process from
an experimental point of view.

IV. AN EXPERIMENTAL FRAMEWORK FOR THE
REFINEMENT PROCESS

The notion of refinement, together with considerations on
the possible structures inherited from the agent’s actions and
statistics of its sensorimotor invariants, have been introduced
in the two previous section. Yet, all these points were mainly
theoretical: no considerations on the computational process
the agent should undergo in order to obtain a correct repre-
sentation have been underlined. However, the refinement is
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a process that will be conducted during the agent life, i.e.
along time. This section is devoted to the introduction of such
experimental considerations that should allow to formalize
(i) what structures can actually be represented and how,
and (ii) how an outside viewer can experimentally assess if
this internal representation is correct. These two points are
addressed in the next two subsections.

A. Introducing an experimental point of view on the refinement
process

1) Experimental setup: To begin with, let’s consider that
the agent is totally naive and only has access to its uninter-
preted sensorimotor flow. From a known home state m0, the
agent performs a naive babbling through a set of N randomly
generated—but repeatable—actions, and then goes back to its
home state m0. Through this exploration, the agent obtains
a number of N reads of its sensorimotor flow (si,mi), with
i = 1, . . . , N . Let’s call M = {mi}i the motor exploration set
corresponding to the reached motor configurations. Under the
hypothesis of repeatability of actions, the agent can repeat the
exploration of the set M , each repetition being parameterized
by an integer k. Thus, at repetition k and motor configuration
mi, the agent sensory input is noted si[k].

At the end of each repetition of M , the agent can compare
the sensations between all pairs (mi,mj) of motor config-
urations in the exploration set M . For repetition k, one can
define the N×N dissimilarity matrix D[k] of all comparisons
whose elements Dij [k] are computed as

Dij [k] =
1

k

k∑
l=1

δij [l], with δij [l] =

{
0 if si[l] = sj [l],
1 otherwise.

(18)
The elements Dij [k] of the dissimilarity matrix D[k] represent
the frequency for two motor configurations mi and mj of
being separated by a sensory input, during the sample of k
repetitions. Thus, it can be envisaged as an estimator of the
sensory dissimilarity σ(mi,mj) defined in §III-A.

2) Experimental internal representation: From Equa-
tion (18) one has that, if during each repetition from 1 to k the
environmental states can be considered static, then the zeros in
D[k] actually represent the equivalence classes mentioned in
the formalization in §II for an explored set M and a sequence
of k environmental states. Thus, at the beginning of the agent
life, i.e. when k = 0, D[0] can be initialized as a null matrix:
all motor configurations have not been distinguished from each
other (see the initial partition in the top of Figure 1(d)). Then,
as the number of repetitions increases, the agent can notice
that during some repetitions two sensations si[k] and sj [k]
might differ. Then, for such pairs one has Dij [k] > 0 and
the agent motor configurations set M can be partitioned as
illustrated in the graph of Figure 1(d).

One would like to state that when k tends to infinity the
dissimilarity Dij converges in probability towards σ(mi,mj),
but it needs some additional theoretical requirements on
both the probability measure P and the stochastic process
describing the succession of environmental states. Moreover
the case where the environment is fixed during a repetition is

purely theoretical. Dealing with a real-life scenario requires to
take into account a continuously changing environment. These
changes might cause distortions between the dissimilarity Dij

and the theoretical dissimilarity σ(mi,mj). Furthermore, as
the agent does not explore all its motor configurations space, it
cannot represent its entire pose quotient space with the natural
structure. The dissimilarity can rather be interpreted as an
estimation of the metric structure of the space where the agent
sensors have moved. Considerations about the link between the
structures arising from the refinement process in a realistic
environment are developed in the following subsection.

B. Evaluation of the representation

So far, it has been proven that, under some hypotheses, the
agent is theoretically able to capture topological properties of
the quotient pose space. In the experimental case, it is not
possible to assess the convergence of the refinement process
at a topological level because the explored points are discrete,
and the discrete topology is trivial. The evaluation based on
topological continuity cannot be performed and should be
replaced by the evaluation of preservation of local structures
in the form of “small” neighborhoods. Points that are close in
one space should correspond to close points in the other space.
Indeed it has been shown that the internal representation is a
finite metric space which is equivalent to a fully connected,
undirected, weighted graph where points are nodes, and edges
are weighted by the distance between the two linked points.
Until now, the quotient pose space has only been given a
topological structure. In order to empirically evaluate the
internal representation metric, it is mandatory to define a
metric on the quotient pose set. This will allow a proper
evaluation of the metric distortion of the representation.

1) Evaluation metric and local structure in the represented
space: Let’s assume that the represented space, e.g. the quo-
tient pose space X/P , is endowed with a metric ρ, called the
evaluation metric, known to an external viewer and compatible
with the natural topological structure in the quotient pose space
X/P . This metric could be used in traditional applications to
derive cost functions for tasks such as path planning. In the
experimental case, when the agent explores the set of motor
configurations M , it runs through the discrete set X = f(M)
of poses. After taking the quotient by regrouping points that
are theoretically not distinguishable from a sensory point of
view, we obtain the discrete subset X/P of quotient pose
set X/P for which ρ is also a metric. Therefore, the space
to be represented by the agent is the discrete set X/P with
the distance matrix R whose elements Rij corresponds to
the distances between elements in X/P : ρ([xi]P , [xj ]P ). The
discrete metric space (X/P ,R) can also be represented as a
weighted graph.

2) Evaluation criteria: From one side we have the internal
representation (M,D) which evolves with the time of explo-
ration, and on the other side the represented space (X/P ,R).
We propose two useful evaluation criterion to evaluate the
structural similarity between these two spaces. The first crite-
rion will guaranty that the agent has distinguished all points
that can theoretically be distinguished. The second criterion,
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gives an evaluation on the conservation of the local structure
between the represented and the representative graphs.

a) The refinement criterion C1: this criterion is defined
as the ratio of the pairs of configurations (mi,mj) that have
not been distinguished by a sensory difference yet but are
distinct in the quotient pose space, over all the N2 possible
pairs. C1 can then be computed as

C1 =
|{(mi,mj);Dij = 0 and Rij 6= 0}|

N2
. (19)

The finest refinement is then obtained when C1 = 0, meaning
that all distinct points in the quotient pose space are distinct
in the internal representation.

b) Local structure similarity criterion C2: topological
preservation between discrete models such as graphs or SOMs
is usually dealt with by evaluating the preservation of neigh-
borhoods [29]. Here it is evaluated as a measure of how well
small neighborhoods are preserved between the dissimilarity
D and the evaluation metric R and is based on the adjusted
Locally Continuous Meta-Criteria (LCMC) used for Local
Multi-Dimensional Scaling (LMDS) [30]. The adjusted LCMC
is mainly used in the context of nonlinear multidimensional
reduction. It evaluates both the preservation of continuity and
the trustfulness of an embedding from measures of dissimi-
larity on a dataset to a low dimensional Euclidean space. The
choice of adjusted LC meta-criteria is also justified by the
fact that it is a non-metric criterion, as it uses ranks in the
dissimilarities and not metric information, and so is invariant
to monotonous scaling of the dissimilarities and the evaluation
metric.

The adjusted LCMC is computed as follows. Let’s
ND
K (i) = {j1, · · · , jK} be the K-Nearest Neighbors (K-NNs)

of configuration i with regard to dissimilarity matrix D,
and NR

K (i) = {k1, · · · , kK} the K-NNs with regard to the
evaluation metric R. Then the neighborhood similarity for
point i is simply the cardinality of their common K-NNs:

NK(i) = |(ND
K (i) ∩NR

K (i))|. (20)

The adjusted LCMC is given in its global form by a normal-
ized and adjusted average over all points by

Q(K) =
1

KN

N∑
i=1

NK(i)− K

N − 1
. (21)

A value of Q(K) close to 1 indicates a high similarity between
all the K-NNs in both spaces. However the adjusted LCMC is a
function of the number of nearest neighbors: the higher K, the
bigger the considered neighborhoods. But the only interest of
the criterion C2 is to evaluate similarity on “local structures”
associated to a small value of K. This can be achieved thanks
to the approach by Lee et al. [31], which consists in finding
the value Kmax of K which maximizes the adjusted LCMC
along

Kmax = argmax Q(K). (22)

Then, criterion C2 is computed as the average below Kmax of
Q as

C2 =
1

Kmax

Kmax∑
K=1

Q(K). (23)

The quantity C2 assesses the similarity of local structures,
e.g. the preservation of neighbors insides the Kmax-NNs. Kmax
represents the scale that corresponds to “local” considerations.
The value C2 = 1 indicates that all the neighborhoods of
all points of size inferior and equal to Kmax are perfectly
preserved. The value C2 = 0 can be interpreted as a random
permutation of the points.

3) 2D visualization: Additionally to the two criterion intro-
duced previously, it is also possible to project the dissimilarity
matrix D to a low-dimensional Euclidean space by using
multidimensional scaling (MDS). This projection can then be
visualized to assess qualitatively the resemblance between the
projected internal representation and the actual quotient pose
space. However, this visualization can not replace the two
quantitative criterion C1 and C2 in the general case, since
the quotient pose space cannot always be embedded into a 2D
or 3D Euclidean space without big distortions. The algorithm
used for the projection is Isomap [32]. Given a value K,
Isomap performs Classical MDS using geodesic distances on
the K-NN graph of the dissimilarity matrix D. The visualiza-
tion being not a criterion per se, any non-metric multidimen-
sional scaling algorithm that preserves local structures such
as Local-MDS, SOM, LLE, tSNE or Curvilinear Component
Analysis could have been selected. The choice of Isomap is
based on its simplicity and the fact that the neighborhood
scale K is already available from the computation of the local
similarity criterion Kmax in Equation (22).

The process for building the internal representation has
now been formalized. Two criteria have been introduced to
evaluate if the space (M,D) is a good representative of local
structures in (X/P ,R). The next section shows the results of
the implementation of the refinement process for a simulated
agent in different environments.

V. SIMULATED RESULTS AND DISCUSSION

This section aims at providing a proof of concept on
how a naive agent can build an internal representation of its
working space in an unknown environment with an uninter-
preted sensorimotor flow. Therefore, the simulated agent will
be tested on different environments. The detailed simulation
setup is described in a first subsection. Then, quantitative and
qualitative evaluations of the obtained representations for two
different scenarios of increasing complexity are proposed.

A. Simulation setup

The agent used in the simulations is the simple 2 degrees
of freedom agent introduced in §II-A2. For all scenarios, the
agent’s motor exploration set M is chosen in the following
way. First, as written in the illustrative example in §II-B3,
recall that the motor configurations of the agent is represented
with the tuple m = (θ1, θ2) where θ1 and θ2 are the two joint
angles of the serial arm. The agent starts from a home position
m0 = (0, 0), the sensor being at the far right of the working
space. It then generates random actions simulated by an addi-
tion of two random angles sampled from a uniform probability
distribution in [0, 2π] after which it goes back to its home
position m0. After the i-th action, the agent receives the motor
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(a) Original working space
with structural clues

(b) (Straight lines) environment (c) (Blobs) environment (d) (Movie) environment

Fig. 3. Far left: the 2D agent’s working space after exploring a motor configuration set M with N = 500 configurations. The explored sensor poses are
black dots and the structural clues are linked colored dots. Right: the three different background environments.

configuration mi. Without further exploration, the explored
pose space would be a set of random points inside a 2D disk.
These explored poses are the black points in figure 3(a). For
a better visual interpretation, some structural clues have been
added in the form of forced exploration points, shown as linked
colored points in figure 3(a). Then the explored points inside
these rings have been removed from the exploration set, thus
allowing a better visualization of the internal representation
distortion. At the end, the explored motor configuration space
M is composed of N = 500 motor configurations and sensor
poses for every scenario. At the end of repetition k, the agent
computes the dissimilarity distance D[k] with equation (18)
between all pairs of explored configurations. For the simulated
environments, the space to be represented is the pose space
X/P = X = f(M), where f is the forward kinematics of
the agent, and the evaluation metric is the euclidean distance
between the poses Rij = ρ(xi,xj) = ||xi − xj ||2.

B. Environments description and results

The simulated environments are separated in 2 scenarios of
increasing complexity. All environments are black-and-white
or gray-scale backgrounds on the pose space of the 2D agent
as shown in the three subfigures 3(b), 3(c) and 3(d). The first
scenario is composed of 2 different environments. In this first
scenario the refinement process matches with the theory: the
environmental states are kept fixed during the exploration of
M , the sensory inputs are either 0 or 1. This corresponds to
the theoretical set-up formalized in §II. The second scenario
is more realistic and is composed of 3 different environments.
In this second scenario the environmental states are allowed to
change during the exploration as it would happen in a realistic
environment, and the agent’s sensory inputs can take more
values than 0 or 1.

1) Scenario 1, static environment during exploration:
a) Straight lines environment: In this first environment,

the environmental states are identical to those in the illustrative
example and are depicted in subfigure 3(b). Each environmen-
tal state is randomly chosen as a straight line crossing the
pose space separating the background in one black and one
white areas. The distribution of these straight lines is taken so
that they uniformly cover the working space, see method 2 of
Bertand’s Paradox [33]. The agent’s sensory input is either 1
or 0 according to which side of the straight line the agent’s
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Fig. 4. Evolution of the refinement criterion C1 for the 5 different envi-
ronments. The vertical lines show at which repetition the finest refinement
(C1 = 0) is obtained.

sensor is in. At the end of each repetition, a new straight line
is randomly chosen and the refinement process continues. This
process is repeated until k = 106 explorations of the motor
exploration set.

Figure 4 plots the evolution of the refinement criterion C1.
The finest refinement is obtained after almost 1400 repetitions,
meaning that the environment is very slow at separating points
in the representation. It is indeed very structured by opposition
to random sensory values over the working space. In Figure 6
is shown the evolution of the local similarity criterion C2

between the measured dissimilarity D[k] at repetition k and
the Euclidean distance R between the poses of the target
pose space shown in subfigure 3(a). The criterion C2 starts
very low for the first exploration and then converges towards
a value of C2 = 0.98 which is almost a perfect match
of local neighborhoods. Indeed, for this environment the
statistics of sensory invariants are invariant to translations or
rotations in the 2D Euclidean working space [34] and in fact
it can be proved that the measured dissimilarity converges
in probability to the Euclidean distance between the poses,
up to a constant factor. In order to interpret the values of
C2 and C1, let’s visualize the 2D projection of the obtained
dissimilarity matrix along the agent life using Isomap. The
results of the visualization for the different environments are
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Fig. 5. Visualization of criterion C2 with the corresponding internal repre-
sentations projected in 2D using Isomap with Kmax-NNs during the agent’s
life in the static environment scenario.
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Fig. 6. Evolution of the local similarity criterion C2. (straight lines) converges
to C2 = 0.98, (blobs) converges to C2 = 0.78 and (movies 22 mpf)
approximately converges to C2 = 0.62, (movies 6 mpf) approximately
converges to C2 = 0.40 and (movies 1 mpf) converges towards C2 = 0.14.
The closer C2 is to 1 the more accurate is the local structure of the internal
representation.

shown in Figure 5 and 73. The internal representation starts
with a few number of distinct points. After 20 repetitions, the
number of points in the representation has increased, and the
structural cues starts shaping with C2 = 0.4. They are visually
well preserved starting from C2 = 0.6 and 50 repetitions.
After the almost convergence of C2 around 104 repetitions, the
internal representation is visually a quasi-perfect reproduction
of the working space which is confirmed by a C2 close to 1.

b) Blobs environment: In this second environment, the
environmental states are composed of randomly generated
background images with black and white blobs stretched in
the bottom left/top right direction of the working space, as
plot in figure 3(c). The blobs comes from a random noise
generated using a procedural Perlin noise with anisotropic
filtering (steerable Gaussian filter) oriented at 45 degrees. The
resultant noisy image is then thresholded to give black and
white blobs. The agent sensations are either 1 or 0 depending
on the color of the blob the sensor is looking at. After each
repetition, a new black-and-white image is randomly sampled.

3Five video attachments have been uploaded together with this submission.
They show the evolution of the representation for the interaction of the agent
with the 5 environments.

This process is repeated until k = 106 explorations of the
motor exploration set.

Looking at the refinement criterion C1 represented in Fig-
ure 4, one can see that the finest refinement is obtained about
ten times quicker than for the straight lines environment.
Indeed, far poses have a clear tendency to be separated
quicker than in the previous environment since blobs are more
localized in space. For a given agent, one could then compare
environments with respect to the number of repetitions re-
quired to reach the finest refinement: the smaller this number,
the richer the environment. The richness of an environment is
thus defined as its ability to quickly separate pairs of poses of
an agent’s explored pose set. In Figure 6, the local similarity
criterion C2 converges to a value of C2 = 0.77 indicating
a distortion of small dissimilarities in D with respect to
the evaluation metric R. Indeed, the sensory invariants have
a higher probability to occur for a pair of points aligned
along the top left/bottom right direction because the blobs are
stretched in this direction. Thus, these pairs of points have
a lower dissimilarity and are considered closer than in the
orthogonal direction. The projected internal representation in
Figure 5 shows as expected a stretch in the direction of high
sensory invariants variance. However, after convergence, the
structural cues are visually well preserved indicated by a high
C2 = 0.77, but not as well as in the previous environment.

Until now, the environmental states were kept fixed during
the exploration. This gives us an insight into the represen-
tation distortion as well as into the notion of richness of
the environment. Let’s now consider more realistic dynamical
environments.

2) Scenario 2, dynamical environment (Movie): In this last
scenario, the environmental states are composed of cropped
images of a black-and-white movie frames. One cropped
image is shown in Figure 3(d). The agent hovers its sensor
across the image; for that purpose, the agent has been centered
inside the movie frame and scaled so that the diameter of
its working space corresponds to 40 pixels in the image. In
order to simulate a spatially continuous environment, the value
given by its sensor is the linearly interpolated gray value at
the 2D sensor pose from adjacent pixels which is quantified
on a 0 to 15 gray scale. Of course the agent’s sensory inputs
are uninterpreted: it cannot know that a value of 3 is closer
to 4 than to 15. Each sensory value is actually seen in this
framework as a symbol. To simulate the dynamics of the
environment, the image is refreshed with the next frame of the
movie after a given number of movements. In the environments
3, 4 and 5 the agent respectively moves at a speed of 22
motor configurations per frame (mpf), 6 mpf and 1 mpf: thus,
a high mpf indicates low dynamics of the environment. The
movie file4 has been played 3 times, resulting in 479166
frames, which in turns corresponds to 21082 repetitions for
environment 3, 5749 repetitions for environment 4 and 960
repetitions for environment 5. Repeating the same movie
allows for more samples with the same sensory statistics
so that convergence is obtained slightly quicker than when
playing differents movies.

4The selected movie is Phantom of the Opera (1943).
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C2 = 0.14
<latexit sha1_base64="UCBRYUwghK503qkzS29suCrg2sg=">AAAC/XicjVLLSsNAFD2Nr1pfVZdugkVwFZJa0I1Q7MZlBfuAKiVJpzU0LyYToRTxH9zq1p249Vv8A935Cd4ZU1CLjwmTnDn3njtzJteJfS8Rpvmc02Zm5+YX8ouFpeWV1bXi+kYziVLusoYb+RFvO3bCfC9kDeEJn7VjzuzA8VnLGdZkvHXJeOJF4akYxew8sAeh1/dcWxDVrnXLh6ZhVbrFkmmYaujTwMpACdmoR8U3nKGHCC5SBGAIIQj7sJHQ04EFEzFx5xgTxwl5Ks5whQJpU8pilGETO6T3gFadjA1pLWsmSu3SLj5NTkodO6SJKI8TlrvpKp6qypL9qfZY1ZRnG9HXyWoFxApcEPuXbpL5X530ItDHgfLgkadYMdKdm1VJ1a3Ik+ufXAmqEBMncY/inLCrlJN71pUmUd7l3doq/qIyJSvXbpab4vVXdxMnnKJ9mvJkOuUXqCWs7w0wDZplw9ozyieVUvUoa448trCNXeqAfVRxjDoa6s/f4BZ32rV2rz1ojx+pWi7TbOLL0J7eAa8dm18=</latexit>

Fig. 7. Final values of C2 with the projected internal representations for 3
different dynamics (mpf = movements per frame) of the movie environments.
The 3 final representations are obtained after 104, 5700 and 960 repetitions
respectively.

Criterion C1 plot in Figure 4 shows that the refinement is
quicker in scenario 2 which indicates richer environments. The
first reason comes from a higher number of sensory values: 16
gray scale values instead of 0 and 1, making it less probable
to have sensory invariants. The 1 mpf environment reaches the
finest refinement the quickest, indicating that quick refinement
is also caused by a higher relative dynamics of sensory
changes in the environment with respect to agent’s movements.
Moreover, Figure 6 exhibits that the 22 mpf, 6 mpf and
1 mpf environments respectively converges to C2 = 0.62,
C2 = 0.4 and C2 = 0.14. In these dynamical environments,
a pair of close points in space but explored after a long time
might have a distortion caused by the possible environment
changes during the reaching time, thus the higher the dynamics
the higher the distortion after convergence. At the bottom of
Figure 7 are shown the final internal representations obtained
after convergence of C2. Visually the structural clues are well
represented when dealing with slow relative dynamics (22
mpf and 6 mpf movie environments). However, considering
a high relative dynamics of 1 mpf, the agent’s movements
are too slow with respect to changes in the environment. As
a consequence, two close poses in space that have a high
probability to generate the same sensory input if reached
quickly, have now a smaller probability to produce the same
sensory input as the environment is likely to change during
the agent movement. The agent cannot capture the spatial
order of the poses anymore and the representation is almost a
random permutation of points, which is obtained when C2 = 0
by definition. In this last case, the internal representation is
certainly not exploitable for any task defined in the working
space because the agent cannot plan continuous trajectories.
Note that the proposed approach could also be exploited in
real world environments. The main difficulties would be to
deal with repeatability of the agent movements, i.e. control
problems such as possible collisions or variability of the
actions. One can also mention some possible issues regarding
the existence of noise in the sensory inputs. In the end, all
this should result in a more distorted representation; hopefully,
there is room for increasing the robustness of the approach,
for instance by using reinforcement learning [35].

VI. CONCLUSION

This paper dealt with the question of how and why a totally
naive (interpretation free) agent with access to its actuator
states and sensors inputs can, through active exploration, build

an internal representation of its sensors states in the physical
world. It has been shown that, under the assumption of
continuity on the statistics of sensory invariants in the physical
space, this internal representation is topologically equivalent to
a space called the quotient pose space. The quotient pose space
represents the states of the agents that can’t be distinguished
by a sensory input (with probability 1). This space comes with
a “natural topology“ defined as the finest one that makes the
movement of the sensors continuous. Then a formalization
has been proposed to adapt the process of refinement to an
experimental context with realistic environments. Proof of
concept examples are shown in adequate environments: low
dynamics relatively to the agent’s movements, high probability
of sensory invariants, but some limitations are presented when
dealing with more challenging environments. A step forward
would be to show a direct exploitation of the topological
internal representation obtained after the refinement process in
tasks such as path planning or obstacle avoidance possibly in
real world applications. Moreover, the introduced concept of
sensorimotor structure learning could be supplemented with
the introduction of hierarchical structures, and the proposed
formalism could be used as a grounding for higher level
considerations in interactive perception. It may also be used
as a tool for learning the structure of space based on the
compensatory actions in Poincaré’s intuition.

APPENDIX A
PROOF THAT P IS A PSEUDOMETRIC IN THE POSE SPACE

In order to show that p is a pseudometric in the pose space
X , let us prove that it satisfies the pseudometric conditions:
for all x,y, z ∈ X :

(a) p(x,y) ≥ 0 (non-negativity).
(b) p(x,y) = p(y,x) (symmetry).
(c) p(x, z) ≤ p(x,y) + p(y, z) (triangle inequality).

Proof:
a) Non-negativity: P being a probability measure, it

is non-negative, e.g. for any E ⊆ E , P (E) ≥ 0. Hence
p(x,y) = P ({ε ∈ E ;φε(x) 6= φε(y)}) ≥ 0 so p is non-
negative.

b) Symmetry: p(x,y) = P ({ε ∈ E ;φε(x) 6= φε(y)}) =
P ({ε ∈ E ;φε(y) 6= φε(x)}) = p(y,x).

c) Triangle inequality: Let’s define Exy as the set {ε ∈
E ;φε(x) 6= φε(y)}, and equivalently for Eyz and Exz .
Then p(x,y) + p(y, z) = P (Exy) + P (Eyz). P being a
probability measure it is subadditive so that P (Exy ∪Eyz) ≤
P (Exy) + P (Eyz). Let us show that Exz ⊆ Exy ∪ Eyz
by contradiction. Assume that Exz 6⊆ Exy ∪ Eyz , then there
exists at least one ε ∈ Exz which is also outside of Exy∪Eyz .
Then φε(x) 6= φε(z) by definition of Exz but because ε
is neither in Exy nor in Eyz , necessarily φε(x) = φε(y)
and φε(y) = φε(z), so φε(x) = φε(z) which gives a
contradiction. Therefore by monotonicity of the probability
measure, P (Exz) ≤ P (Exy ∪ Eyz) ≤ P (Exy) + P (Eyz),
hence p(x, z) ≤ p(x,y) + p(y, z).
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APPENDIX B
PROOF THAT EMPIRICAL AND NATURAL TOPOLOGIES ON
THE QUOTIENT SET ARE TOPOLOGICALLY EQUIVALENT.

Let us denote as τM, τX and τX/P the natural topologies
of the respective spaces M, X and X/P . Let’s call τp the
topology induced by the pseudometric p in space X and τp∗
for the topology induced by the metric p∗ in space X/P . Let’s
consider the following commutative diagram:

(M, τM) (X , τX ) (X , τp)

(X/P , τX/P ) (X/P , τp∗)

f idX

πXP πXP
idX/P

(24)

From hypothesis (H1) the pseudometric p is continuous on
the pose space X with the natural topology, hence the identity
map idX from (X , τX ) to (X , τp) is continuous. Moreover, πXP
which maps poses to equivalence classes is a continuous map
from (X , τX ) to (X/P , τX/P ) because, from the definition
of natural topology, τX/P is the topology induced by this
mapping. The map πXP from the pseudometric space (X , τp)
to the metric space (X/P , τp∗) is called a metric identification
and it preserves the induced topologies, thus it is continuous.
Hence, by commutation of the diagram, the map idX/P from
(X/P , τX/P ) to (X/P , τp∗) is also a continuous map. From
(H2), we have that (M, τM) is a compact space. Compactness
property is preserved through continuous maps so that all
considered spaces are compact. It has been shown that the
space (X/P , τp∗) is a metric space, in particular it is Hausdorff
(all pairs of distinct points have disjoint neighborhoods).
Moreover, it is known that a continuous bijection from a
compact space to a Hausdorff space is a homeomorphism
so that idX/P is a homeomorphism. Therefore, natural and
empirical topologies coincide on X/P , τX/P = τp∗ .
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