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Where do I move my sensors?
Emergence of an internal representation from the

sensorimotor flow
Valentin Marcel, Sylvain Argentieri and Bruno Gas

Abstract—In autonomous robotics the question of the repre-
sentation of the world is of crucial importance for the realization
of complex tasks. However, building such a representation is
often rooted on human-crafted a priori about the world. But
as complexity increases this idea is not adapted anymore:
fully autonomous agents in the real world require generalized
representations. These must be built from experience and possibly
with minimal external assumptions.

This context is perfectly suited to the approach of sensorimotor
perception, where the agent has to interpret the effects of
naive actions on its inputs that come from exteroceptive and
proprioceptive sensors. By exploiting basic sensory invariants,
we show that it is possible to project the highly dimensional
motor configurations into an internal representation of the
sensors’ configuration space initially unknown to the agent. This
allows the agent to build an internal model of the sensitive
configurations.

I. INTRODUCTION

Space perception is a central issue in mobile robotics.
Indeed, many abilities depend on it, as moving, trajectory plan-
ning or obstacle avoidance. Traditional approaches consider
that space is something that exists objectively. But the senso-
rimotor contingencies theory (SMC) [1], [2] claims that it has
not to be the case. Space has not to be an established substrate
per se, but something that an agent may experience via the
determination of sensorimotor invariants called contingencies.
The underlying idea is based on the notion of compensable
sensory changes proposed initially by Poincaré [3], [4]. Since
then, substantial works have been published about considering
action in the structuring of perception [5]–[9], some of them
aiming to verify Poincaré’s idea, but more recently with a
growing interest for robotics applications. For instance, [10]
introduces ”interactive perception” very recently as a set of
approaches in robotics concerned with the implication of
action in perception.

In the early 2000s, Philipona [11] proposed a first math-
ematical formalism by defining the sensorimotor law as
s = Ψ(e,m) where s denotes the sensation vector, e the vector
representing the state of the environment and m the motor
state of the agent. Laflaquière et al. [12] have also shown that,
beyond the dimension of space, it is also possible to obtain an
external space representation by using appropriate partitions
of the motor space, resulting in a much more motor oriented
than sensor oriented framework. In [13] we have further shown
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that the topological properties of the space of sensory invariant
on a sensitive body can be well captured. In this article, we
will extend these previous works and provide a framework
to describe the process that goes from a quasi-uninterpreted
sensorimotor flow to a structured internal representation of the
external physical space in a changing environment.

The first section is devoted to the presentation of the set-up
priors and notations in the formalization of the sensorimo-
tor refinement. The second section presents an experimental
description of the building of the internal representation.
Finally, we propose a set of simulations as proofs of concepts
illustrating the reconstruction of sensors states in the physical
space.

II. FORMALIZATION OF SENSORIMOTOR REFINEMENT

A. Priors and notations

Let’s consider a naive agent which can interact with its
environment by generating commands in the space M called
the motor configuration space. This space is described by
the latent variables m ∈ M that parameterize the actuators
sates: joint angles, relative positions, etc. This agent is also
composed of sensors that are rigidly placed on parts of its
body. These sensors send a signal s ∈ S , where S is the
sensory space. The sensory input s ∈ S depends both on the
current motor state m ∈ M and the current physical state
of the environment denoted by ε ∈ E where E is the set
of all environment states. The function Ψε(m) = s depicts
the sensorimotor law. It is assumed here that the absolute
position of the agent is fixed in the physical space and
can not be displaced by any commands in M so that the
environment physical state ε can not depend on m. Of course
all considered variables are also function of time t such that
one can write m(t), ε(t) and the current sensation is given
by s(t) = Ψε(t)(m(t)).

To go further, the agent requires a level of interpretation
of the sensory input; this can be given through multiple
structure type: the sensory input is a binary vector or it is
composed of real values or it is an image, more generally a
complex tensor, etc. These semantics usually enable the agent
to perform complex computations that directly provide high
level information. However, in this article we will just require
the agent to be able to perceptually assess if two sensory
inputs are equal or not. This is the only a priori information
needed here to build the sensorimotor structure. So let’s call
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δ : S × S → {0, 1} the comparison map for sensory inputs
which gives the boolean 1 if they are different and 0 if equal.
For the sake of simplicity we will generally denote by s = s′

the statement δ(s, s′) = 0. The sensory comparison already
gives a structure to the sensory space, the so-called ”sensory
invariants”. Thanks to the sensory motor law Ψ we can already
state that there are two kinds of sensory invariants.

B. Configuration invariance and sensorimotor points

Two motor configurations are “configuration invariant”
when they generate an equal sensory input for all environment
states explored by the agent. More formally: take a motor
configuration m ∈ M and let E be the set of environ-
ments explored by the agent, then the set [m]E = {m′ ∈
M; Ψε(m

′) = Ψε(m),∀ε ∈ E } is called the configuration
invariant set of m. These sets are sensory redundant to
the agent, without loss of information they can be reduced
to “sensorimotor points”. This gives the refined motor set:
M/E = {[m]E ;m ∈ M} as the set of points that cannot
be discriminated from the obtained sensorimotor flow. There
are three possibilities for two motor configurations to be
configuration invariant. Firstly, they can correspond to redun-
dant configurations of the kinematic structure of the agent.
Secondly, they can correspond to different sensors’ poses but
identical receptive fields (temperature sensors are generally
not sensitive to pure rotation). Finally, it is possible that the
environment states have not been rich enough: a portion of the
physical space may have not changed its physical properties.
As an example, suppose the environment is composed of a
cloudless sky which is always blue, any color sensor pointing
at any part of this sky will always return the same sensory
input.

C. Environment invariance and similarity

Two motor configurations, even if not in the
same configuration invariant set, may generate equal
sensory inputs for a set of environment states. More
formally, for a pair m, m′ ∈ M, let’s call the set:
E(m,m′) = {ε ∈ E ,Ψε(m) = Ψε(m

′)} the environment
invariant set of (m,m′). It is assumed here that the physical
properties in the physical space are structured in space so
that close points in space share similar physical properties.
Therefore a pair of motor configurations, that gives two
sensors spatial configurations with close receptive fields, may
have a high probability to generate equal sensory inputs. This
property is captured in the size of their environment invariant
sets, which can be measured using as an example an a priori
probability measure. The closer they are, the bigger are their
environment invariant set. This can be used by the agent as a
similarity measure between motor configurations.

To subsume the agent can, from the ”configuration invari-
ants” build an internal representation closely related to points
in space and from the ”environment invariants” add a measure
of similarity between these points which are likely to represent
continuity in space. The next section is devoted to show how
the agent can experimentally build this internal representation.

III. EXPERIMENTAL CONSIDERATIONS AN INTERNAL
REPRESENTATION

A. Notations

Let’s consider now that the agent has only access to a
discrete time sensory input, so that the sensory input is sent
every ∆t. Let’s write m[k] = m(t0+k∆t), ε[k] = ε(t0+k∆t)
and s[k] = s(t0 + k∆t) the sampled variables with k ∈ N
the current sample and t0 an arbitrary starting time. If the
agent sends a new command it will obtain sensorimotor
input (m[k + 1], s[k + 1]) which naturally correspond to
ε[k + 1]. Thanks to the comparison map δ the agent can
compute δ(s[k], s[k+1]). However in order to state that motor
configurations m[k] and m[k + 1] are in a ”configuration
invariant” situation for the current environment state, one
needs to postulate that the environment has not changed, or
very little, during ∆t: ε[k] ∼ ε[k + 1], otherwise sensory
equality can be provoked by a change in physical state and
not because of spatial closeness. More generally, this leads to
an assumption about environment states dynamics. Moreover,
in order to build an internal representation, the agent needs to
perform the following sensorimotor refinement process.

B. Sensorimotor refinement process

This process consists in repeating again and again the explo-
ration of a specific set MN ⊂M of N motor configurations.
So, assuming that the sample increments after each movement
we can write MN = {m[k + 1],m[k + 2], . . . ,m[k + N ]}
and the repetition yields m[k + N + 1] = m[k + 1]. This
exploration should be the most rapid as possible so that the
assumption about environment states dynamics is verified:
ε[k + 1] ∼ ε[k + 2] ∼ ...ε[k + N ]. After the exploration, it is
possible for the agent to wait for changes in the environment
states such that ε[k + N ] � ε[k + N + 1] which allows the
exploration to be repeated for a different physical state and
enable refinement. From L repetitions of the exploration of
the motor exploration set MN the agent obtains the matrix
S[L] of sensations of size L×N composed of:

S[L] =


s[1] ... s[N ]

s[N + 1] ... s[2N ]
...

...
...

s[(L− 1)N + 1] ... s[LN ]

 . (1)

The first dimension of S[L] corresponds to the repetitions
of the exploration which ideally corresponds to different
environment states, it is the index of refinement for MN .
The second dimension corresponds to the number of motor
configurations in the explored set.

C. Internal representation structure

Then, the next step consists in the computation of statistics
on sensory invariance which allows to build a structured
internal representation. Let’s apply the comparison map δ to
comparable sensations, the pairs of sensations that are on the
same row because the environment state is assumed stationary.
We obtain pairwise comparisons for all refinement indexes
l ∈ [1, L] in the matrix ∆[l] of size N ×N such that:
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Fig. 1. Simulated set-up and projection of sensory invariants in the working
space. (a) corresponds to the sensory invariants after 1 random environment
state. (b) corresponds to the sensory invariants after having seen 3 random
environment states, the gray shades correspond to the sequences of the 3
possible successive sensory inputs at each point in the working space. (c)
corresponds to the sensory invariants after 100 environments.

∆[l] =


0 δ12[l] · · · δ1N [l]

δ21[l] 0 . . . δ2N [l]
...

... . . .
...

δN1[l] δN2[l] . . . 0

 . (2)

where δij [l] = δ(s[(l− 1)N + i], s[(l− 1)N + j]) is the com-
parison of the sensations obtained from motor configuration
i and j of the exploration set MN at repetition l. One can
obtain the current similarity between all motor configurations
by computing the size of the observed invariant environment
sets for all pairs. However, we are more interested in the
dissimilarity, which gives a notion of distance between points.
Let’s call D[L] the dissimilarity matrix. It is composed of
elements dij corresponding to the mean number of repeated
explorations for which the motor configurations i and j have
generated different sensations. Simply put, ∀i, j ∈ [1, N ]

dij [L] =
1

L

∑
l=1:L

δij [l]. (3)

Or in matrix form:

D[L] =
1

L

∑
l=1:L

∆[l]. (4)

It can be shown that the dissimilarity is in fact a metric on
the set of current discrete equivalence classes [i]L = {j ∈
[1, N ]; δij [l] = 0,∀l ≤ L}.

At the beginning all points are not sensory distinguished.
As long as the refinement process goes, the number of
distinguished points increases until the finest refinement is
obtained for a sufficiently large number of repetitions L. Then
the dissimilarity D[L] can be used as a structure on the set of
finest points corresponding to the ”configurations invariants”
of the current sampled motor exploration set. If the number
of sampled motor configuration is dense enough, the obtained
structure is likely to be representative of the topology of the
configuration invariants in the physical space.

IV. SIMULATIONS

We can illustrate the approach with a simple system. The
presented agent is the serial arm in figure 1 with two degrees
of freedom controlled by two joint actuators through motor
configurations m = [m1,m2] ∈ [0, 2π]2. The generated
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Fig. 2. Configuration invariants in the motor space. In (a), (b) and (c) colors
respectively corresponds with colors in (1a), (1b) and (1c)

sensations are given by a single pixel black and white camera
s ∈ {0, 1} placed at the end-effector of the serial arm so that
it is displaced inside a disk forming the working space. The
environment is a black and white background image that is
randomly changed.

A. Simulated refinement

To show the evolution of the refinement, consider the most
simple environment set-up for the background: a black and a
white half planes separated by a random straight line which
intersects with the working space, one possible state is shown
in subfigure (1a). Keeping track of the successive sensory
invariant during the repeated explorations of the motor space
with different environment states, the agent should be able
to refine it as shown in subfigures (2a), (2b) and (2c) for
respectively 1, 3 and 100 different environment states. The
configuration invariant areas depicted in shades of gray in the
motor space correspond to the portion in the working space
with the same shade in subfigures (1a), (1b) and (1c). The
more repetitions there is, the more there will be “sensorimotor
points” in the refined motor set.

Let’s now show the structure obtained from the statistics on
sensory invariants.

B. Structure from statistics on sensory invariants

Let’s first consider the same agent with the same environ-
ment. As an exploration set MN , the agent sends N = 400
naive random commands in [0, 2π]2 and gets the corresponding
motor configurations into the setMN . The N motor states are
each associated to their corresponding sensor poses (i.e. points
in the working space), which are shown in Subfigure (3a)
with a color depending on their distance to the center. After
running the refinement process with L = 1000 repetitions
of the N = 400 generated motor configurations, the agent
obtains a dissimilarity between the sensorimotor points which
can be compared to the Euclidean distance matrix between
the 2D−poses of the sensor. The comparison is shown in a
variogram in Subfigure (3b) as a scatter plot. In this figure,
one can directly verify if small distances correspond to small
dissimilarities and if so the representative space has the same
topology than the 2D−euclidean pose space. Here we see a
linear correlation between dissimilarity and distance, therefore
topological properties are indeed conserved by the refinement
process. Moreover, one can use Classical Multidimensional
Scaling [14] on the dissimilarity matrix in order to visualize
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(a) Poses ground truth (b) Variogram dissimilar-
ity/Euclidean distance.

(c) Projected representa-
tive space with cMDS.

Fig. 3. Results for the illustrative example. LEFT: 400 target poses in the
plane. Colors correspond to the radius of poses. RIGHT: Internal representation
with preserved topological structure. Colors correspond to the radius of poses
in (a).

Fig. 4. A more challenging environment: random black and white noise.

the internal representation. The projection in 2 dimensions is
given in the subfigure (3c) where the obtained points are col-
ored with the corresponding Euclidean distance to the center.
This qualitatively confirms that the topological structure of
poses in space are preserved in the internal representation.

Let’s now take a more challenging environment for which
sensory invariant statistics are not linear in spatial distance
and test if the internal representation still captures topological
properties. In the following simulations, the environment is
now made of background images of normalized spatially co-
herent noise whose statistics are invariant through translation
or rotation. The implemented noise function is very similar to
Perlin noise [15] and is shown in figure 4.

The exploration is repeated for L = 1000 different envi-
ronments on N = 400 motor configurations. In order to show
the conservation of the topology, the motor exploration set
has been modified to add some holes and contours which
are represented in subfigure (5a). After the repetitions, one
can compare the obtained dissimilarity to the pairwise Eu-
clidean distances in the working space in subfigure (5b).
From the subfigure, one can see that the small distances are
preserved; therefore the topology is also preserved. However
the dissimilarity saturates for high Euclidean distances due to
low sensory correlation between far poses. Instead of MDS,
one need to use an algorithm that preserves small distances
such as ε−Isomap [16] which gives the satisfying result of
subfigure (5c).

V. CONCLUSION

In this article, the authors have a proposed an approach
for the emergence of a spatially-related structure from the
sensorimotor flow with very weak assumptions on the sensory
structure or a priori knowledge about the physical world. It
has been shown that from a simple comparison rule between
sensations, one can derive an internal representation which

(a) Poses ground truth. (b) Variogram dissimilar-
ity/Euclidean distance.

(c) Internal representa-
tion with Isomap.

Fig. 5. Results for the more challenging example. LEFT: 400 target poses, the
color are arbitrarily drawn to show the topological structure. RIGHT: Internal
representation with preserved topological structure.

captures continuity in the physical space. A description of the
process has been provided as well as some simple results to
illustrate the interest of the approach. The internal represen-
tation can be improved using information-based principles as
in [17]. Extended work could focus on the generalization to
more complex set-up and the use of the internal representation
to guide intrinsically motivated sensorimotor behaviors.
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