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Building a Sensorimotor Representation
of a Naive Agent’s Tactile Space

Valentin Marcel, Sylvain Argentieri and Bruno Gas

Abstract—A new approach for robotics perception, rooted in
the sensorimotor paradigm, is proposed in this paper. Making
systems able to autonomously adapt themselves to changes in
their own body or in their environment is still a challenging
question for many different scientific communities. Multiple
works propose either sophisticated adaptive model-based or
learning-based techniques as a solution. Recent contributions
have shown that it is possible for an agent to discover the
structure of its interaction with the environment or its own body
via the so-called sensorimotor flow. The presented work is based
on this idea, and a method for building an internal representation
of sensorimotor interaction is proposed, which does not require
any a priori knowledge or model. A careful mathematical for-
malization is outlined, together with simulations, demonstrating
the effectiveness of the approach. Several cases are considered
allowing for a general discussion. Moreover, plausibility of the
internal sensorimotor representation is highlighted by showing
that it is possible to consider motion planning directly from it.

Index Terms—Active exploration of environment, robots with
development and learning skills, using robots to study develop-
ment and learning, applications.

I. INTRODUCTION

MORE and more researchers from different scientific
fields (psychophysics, artificial intelligence, philoso-

phy, . . . ) raise the question of how can a mobile agent perceive
its environment without any model either of its environment or
of itself. Of course, using a priori models of the environment
can make robotic systems fast, efficient and robust when
executing complex predefined tasks. But at the same time, such
systems may have difficulties behaving autonomously, namely
adapting themselves to unknown environments that have not
been modeled or learned before –except by considering that a
universal model could be obtained from a learning procedure.

A different path is proposed here, paved by Poincaré more
than 100 years ago [1], [2]. In this line of research, what is
called perception is not an innate capacity. It is something that
is learned and can not be separated from motor action. Indeed,
this sensorimotor flow carries fundamental information about
the external space and its geometry [3]. For instance, Poincaré
states that the external space dimension can be extracted
from it by an agent endowed with several motor degrees of
freedom and sensors whose outputs depend on the 3D position
of the system. More generally, the sensorimotor flow indeed
reveals some correlations, i.e. sensorimotor contingencies [4],
which are invariant and carry information about the external
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environment of the agent. Philipona et al. proposed a mathe-
matical formulation of this idea, not by using proprioceptive
signals as suggested by Poincaré, but by exploiting sensor
outputs signals instead [5]. The demonstration is based on
the study of the sensory manifold and on its dimension. On
this basis, the authors have been able to prove Poincaré’s
intuitions but only when using infinitesimal movement ampli-
tudes. Such a limitation, originating from the use of standard
linear mathematical tools, does not allow any experimental
validation of the approach. Bootstrapping methods have been
proposed to solve this problem [6]. For instance, Laflaquière
et al. succeeded in extending the approach to much more
realistic movement amplitudes by coupling a motor bootstrap
technique with a Curvilinear Component Analysis (CCA) [7].
But all these approaches were criticized by Frolov in [8],
claiming that they require a stable external environment during
the exploration. Indeed, these works postulate some a priori
knowledge of the environment that cannot be obtained by
the sensory system only. As a solution, Frolov introduced a
body endowed with tactile sensors and a mobile arm. While
proprioceptive signals still encode the arm movements, the arm
end-effector has to touch the body itself so as to ensure a stable
perception, thus obtained without any prior hypothesis on the
environmental state. Using a different approach, Laflaquière et
al. have shown that, beyond the dimension of space, it is also
possible to obtain an external space representation by using
appropriate partitions of the motor space [9], resulting in a
much more motor oriented than sensor oriented framework.
In this contribution, each end-effector position of an arm is
represented by the subset of the motor configurations leaving
the sensory state invariant, the so-called kernel manifolds. But
the limitations pointed out by Frolov apply here again, as a
stable environmental state is still required.

This paper is focused on the extension of Laflaquière &
al.’s approach to the building of an internal representation of
an agent body, in the vein of Frolov’s previous work. As
outlined by Gapenne [10], body representation is of great
importance in the understanding of the proprio-exteroception
coupling, especially when facing the distal perception problem
i.e. perceiving objects in space outside of the body. The goal
is to prove, at first in a formal way, and then by means of
computer simulations, that the sensorimotor representation of
space proposed by Laflaquière & al can be extended to build
an internal representation of the interaction between an agent
with its own body. Recently, we have proposed a sketch of this
work [11]. However the mathematical proof was inadequate
and the simulations were limited to a very specific case. In
this paper, an extension of [11] is proposed as more complete
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solution to the body perception problem by using sensorimotor
concepts. The internal kernel representation of the external
space used in [9], [11], which is limited in this case to the body
shape, is precisely mathematically formalized with proofs
relying on the isomorphism theorems. Moreover a proof of
the continuity of the internal representation is proposed, which
is coherent with the external space continuity. This result
is highlighted by the existence of a homeomorphic relation
between the internal representation and the body space. As
a result, it is shown that it becomes possible to build new
motor commands by making interpolations in the internal
kernel space. In other words, the internal representation can
be successfully used to plan new movements of the body
arm, i.e. movements built from motor configurations that have
never been used before to obtain the internal representation.
Motion planing is a well known robotics field that has been
addressed by many researchers [12]–[14]. But the focus here
is more to show the effectiveness of the internal sensorimotor
representation rather than to propose another solution to path
planning problems. In order to validate the approach in an
efficient way, two kinds of experimentation are proposed, one
using an agent endowed with an end-effector made of one
finger, and the other with an end-effector made of two rigidly
linked fingers. In both cases, two body shapes are considered,
spherical and cubic, allowing a more general conclusion.

The paper is organized as follows. §II is devoted to the
mathematical foundations of the proposed approach. Next,
§III presents the simulated agents and the building of the
internal representation in every considered cases. The results
about internal representation are compared and discussed at
the end of the section. The last section §IV is devoted to the
motion planning problem using the sensorimotor representa-
tion. Obtained results with both spherical and cubic agents are
presented and discussed. Finally, a conclusion ends the paper.

II. TOWARDS A MATHEMATICAL FORMALIZATION

As a first step, this section is devoted to the formalization of
the mathematical foundations required for building an internal
representation of an agent’s sensorimotor invariants. The first
subsection is devoted to the formalization of the influence of
the sensor pose on the consecutive sensations. Quotient sets
will be introduced to mathematically describe the notion of
sensory invariance, by regrouping all the sensor poses leading
to the same sensation. In a second subsection, the agent body
is introduced as a way to actively modify the sensor pose
via its motor commands. This will allow to regroup, in a
motor quotient set, all the motor commands leading to the
same sensation, thus defining sensorimotor invariants. Their
mathematical properties will be demonstrated, and exploited
in Section III. A small discussion ends this section.

A. Sensory inputs and quotient set

Let’s first consider a sensor (or a group of sensors), whose
position and orientation in space is entirely captured by its
pose X ∈ χ, with χ the pose space. χ is included inside
the Special Euclidean group SE(3), which is defined as the
semidirect (noncommutative) product SO(3)⋉R3 with SO(3)

the 3D rotation group and R3 the 3D translation group.
Indeed, the sensor pose is defined by a composition of one
translation (the sensor position) and one rotation (the sensor
orientation). For now, the sensor is considered alone: it is
not connected to any agent body, which will be introduced
in the next subsection. This sensor generates a sensation
vector S = (s1, s2, . . . , sS)

T ∈ S , with S ⊂ RS the sensory
space, and .T the transpose operator. Such a vector could
originate from any modality, and/or could be the result of the
concatenation of multiple sensor outputs; in such a case, it
is supposed that these sensors are all rigidly stuck together.
Importantly, by further restricting S to Σ = Im (ϕϵ), ϕϵ can
be rendered surjective from χ to Σ. In other words, Σ is the
set of all “physically” reachable sensory states, and will thus
also be called the sensory space. Note that ϕϵ is not necessarily
hypothesized as being a continuous function, and is considered
non-injective, i.e. two different poses X1 and X2 can generate
the same sensation S. Such a property allows then to define an
equivalence relation =ϕϵ between any pair of pose (X1,X2)
of χ, such that

X1 =ϕϵ X2 ⇔ ∃S ∈ Σ, ϕϵ(X1) = ϕϵ(X2) = S. (1)

It follows that =ϕϵ is by definition the equivalence kernel of
ϕϵ. For any X ∈ χ such that ϕϵ(X) = S, let’s now denote
by KX the equivalence class of X, with

KX = {R ∈ χ | R =ϕϵ X} . (2)

KX can then be modded out to form the quotient setχ/=ϕϵ
,

with

χ/=ϕϵ
= {KX | X ∈ χ} . (3)

Then, one can denote πϕϵ the quotient map from χ to its
quotient set χ/=ϕϵ

, mapping each pose X to its equivalent
class KX.

Proposition 1. There exists a bijective function between the
sets χ/=ϕϵ

and Σ.

Proof. Proposition 1 is trivial. The quotient set χ/=ϕϵ
is

isomorphic (in the set-theory sense of a bijection) to its image
Σ by ϕϵ. Specifically, each equivalence class KX corresponds
to a unique sensation S.

Figure 1 highlights the relationships between χ, Σ and
χ/=ϕϵ

. Regrouping all the sensor poses leading to the same
sensation S in the same set KX defines a so-called pose kernel
manifold (gray area in χ). Each kernel manifold can then be
conceptually represented in χ/=ϕϵ

by a point. Thanks to the
equivalence relation =ϕϵ (dotted line), each of them is also
linked to a unique sensation S (green arrows). Indeed, since the
forward sensory function ϕϵ is surjective, then Proposition 1
also tells that there exists a bijective function between χ/=ϕϵ

and Σ. However χ/=ϕϵ
can only be built by regrouping all

the sensor poses leading to the same sensation, while the agent
does not have any way to actually modify them. To be exact,
no agent has ever been considered so far. So lets now introduce
the agent and its action capabilities in the formalism.
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Fig. 1. Schematic representation of the different spaces involved in the paper.
M is the motor space, χ is the pose space, Σ is the sensory space, M/=Ψ

and χ/=ϕϵ
both represent the quotient sets the agent will actually build and

represent, respectively.

B. Agent body and motor quotient set

Lets now consider a robotic system whose kinematics
is inspired by traditional industrial robots. It is composed
of moving rigid parts, each of them being connected to
each other via a revolute joint parameterized by a scalar
mi ∈ R, i = {1, . . . ,M}, see Fig. 2. The motor config-
uration of the agent is entirely described by the vector
M = (m1,m2, . . . ,mM )T ∈ M, with M ∈ RM the so-called
motor configuration space. One can assume without any
loss of generality that the motor configuration space M is
a compact M-dimensional manifold. The sensor previously
mentioned in §II-A is now supposed rigidly linked to the
end-effector of the system. Then, the sensor pose X will
depend on the motor configuration M. Using the forward
kinematics model of the system f(.), X can be computed
from the motor configuration M, i.e. X = f(M). Due to
the possibility of redundancy, f can be surjective, as different
motor configurations can lead to the same sensor pose. The f
function also has the property of being a continuous, smooth,
mapping from the compact manifold M to the pose space χ
which is supposed Hausdorff. By extension, the quotient set
χ/=ϕϵ

will also be hypothesized as Hausdorff.
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Fig. 2. Proposed robotic system. It is made of M = 6 degrees of freedom,
each of them being controlled via a motor command mi, i = {1, . . . ,M} and
moving the end-effector in the 3D space. Blue dots represent revolute joints,
green dot depicts spherical joint, and the red dot indicates the end-effector.

As illustrated in Figure 1, a motor configuration M can
now be associated to a sensation S thanks to the sensorimotor
function Ψ = ϕϵ◦f . On this basis, and with the same reasoning
as in §II-A, an equivalence relation =Ψ can be defined between
any pair of vectors (M1,M2) of M, such that

M1 =Ψ M2 ⇔ ∃S ∈ Σ,Ψ(M1) = Ψ(M2) = S. (4)

Lets now denote KM the equivalent class of M, i.e.

KM = {Q ∈ M | Q =Ψ M} ,
= f−1(KX), with X such that ϕϵ(X) = S,

(5)

which can then be modded out to form the quotient set M/=Ψ

M/=Ψ = {KM | M ∈ M} . (6)

Proposition 2. M/=Ψ is homeomorphic to χ/=ϕϵ
.

Demonstration of Proposition 2 is written in Appendix A.
Considering Proposition 1 and 2 together, one can then con-
clude that if the agent is able to build the quotient set M/=Ψ

by regrouping all the motor commands leading to the same
sensations S ∈ Σ, then this quotient can be used by the
agent to represent the quotient set χ/=ϕϵ

. In other terms,
the space of all reachable end-effector poses leading to a
sensation S ∈ Σ is accessible to the agent by exploration of
its sensorimotor invariants. The way the quotient set M/=Ψ

is actually discovered and used in practice by the agent is
illustrated in section III.

C. Interpretation and discussion

Proposition 2 hides, in some sense, the influence of the
environment. Indeed, the existence of the quotient set M/=Ψ

will be relevant to the agent only for a fixed environmental
state ϵ during its exploration. This is clearly a strong a priori
hypothesis faced by a lot of previous works [5], [6]. A first
solution has been proposed in [8]: instead of independently
analyzing proprio and exteroceptive data, the authors have
proposed here to make them match together, with the idea
that these two modalities must share common properties of
space. This idea is illustrated with a simulated system made
of a moving arm and a tactile body. With such a system,
the approach allows the agent to build autonomously a 3D
representation of space, which is obtained using a projection
of proprioception and tactile data on a common representation,
when the end effector touches the agent body. As a conse-
quence, the environmental stationarity issue mentioned above
does not hold anymore, the agent being in interaction only
with its own body. Of course, the conclusions obtained with
such an approach are thus limited to a representation of the
body only, and do not capture any information about the space
in which the agent is immersed. This paper is built on the same
idea, and a tactile body will be introduced in the next section
to allow the agent to build not only a representation of its
own body, but also a topological image of the interaction with
itself.

Another comment concerns the forward sensory function
ϕϵ, which is only supposed surjective thanks to the restriction
of S to Σ (see §II-A). Such a property clearly allows one
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to capture every case an agent might encounter during an
exploration. Furthermore, regrouping all the sensor poses lead-
ing to the same sensation allows one to discard the possible
system redundancy, and to build the quotient set χ/=ϕϵ

of
the pose space χ through sensory invariants considerations.
While possibly targeting the same kind of applications, ”active
approaches” to perception often explicitly model the structure
of such a latent space. For instance, this allows the exploitation
of independent variables, whose values can be modified by
predefined control laws, in order to drive the system to
an a priori targeted perception. The proposed sensorimotor
approach allows instead the agent to autonomously build its
so-called internal representation M/=Ψ by motor exploration
and sensory invariants considerations without any a priori. So
let’s now focus on the way Proposition 2 can be exploited by
an artifical agent to actually build M/=Ψ .

III. BUILDING OF THE SENSORIMOTOR INTERNAL
REPRESENTATION OF SIMULATED AGENT

It has been demonstrated that the quotient set M/=Ψ
can be

used as an internal representation of the quotient set χ/=ϕϵ
. A

simulated robotic system is now introduced in the following
to illustrate (i) how M/=Ψ can actually be built from the
sensorimotor flow of the simulated agent, and (ii) how M/=Ψ

can then be used as an equivalent representation of χ/=ϕϵ

by the agent. This representation is then exploited for motion
planning applications in Section IV. The description of the
proposed simulated agent is proposed in a first subsection.
The link between the mathematical considerations from §II
and the proposed system will be carefully discussed in there.
Then, the simulation setup and the algorithm for the building
of M/=Ψ by the agent is provided in a second subsection.
Finally, simulation results are provided in the last subsection.

A. Simulation setup and algorithm

1) Description of the proposed agent setup: In the fol-
lowing, the agent is made of a fixed spherical body covered
with S tactile receptive fields and a multi-DoF arm similar to
the one illustrated in §II, see Fig. 2. Note that a cubic body
will also be introduced in §III-C1 to evaluate the genericity
of the approach. The arm basis and the spherical body are
affixed, so that only the arm is able to move thanks to its
M = 6 actuators. In order to illustrate the genericity of the
approach, 2 different arm end-effectors will be considered. In
a first case, the end-effector is made of a single fingertip, i.e.
a pointwise tool (see Figure 3-left). In a second case, a double
fingertip –made of two distinct pointwise fingertips rigidly
linked together– is used (see Figure 3-right). Whatever the end-
effector, the sensation vector S will originate from the body
endowed with a tactile modality, and not from a sensor placed
at the end-effector configuration, as hypothesized in §II-B.
But the tactile sensation will be supposed different from
0 only when the end-effector is in contact with the body
(see Eq.(7) and (8)): in such a case, the origin of the sensation
is not relevant anymore, and the formalization proposed in
Section II still applies. Of course, the pose space χ will be
now restricted to the end-effector pose X, under the constraint
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Fig. 3. Agent setup. (Left) The arm touches the spherical body endowed with
S tactile receptive fields with a single fingertip tool. (Right) The arm is now
endowed a double fingertip tool.

of the existence of a contact with the agent body. In other
terms, depending on the nature of the contact with the body,
the quotient set χ/=ϕϵ

will be different:

• with only one pointwise contact with the body (the one
fingertip arm): in this case, the fingertip orientation will
not have any influence on the corresponding tactile sen-
sation generated by the body. Consequently, the quotient
set χ/=ϕϵ

, regrouping all the fingertip poses leading to
the same sensation, will be entirely described by 2 latent
variables, and can then be directly exploited to represent
the 2-sphere body manifold inside a 3D euclidean space;

• with two rigidly linked simultaneous pointwise contacts
(the two fingertips case): the fingertip pose will be now
entirely described by three parameters: a position on the
2-sphere body and one orientation along the axis joining
the two contact points.

Let’s now precisely explain how the sensation S is actually
obtained from the tactile agent body.

2) Sensation generation: Whatever the considered agent
(with one or two fingertips), it is hypothesized that a contact
with the full end-effector is mandatory to generate a non-null
sensation vector S. For the single fingertip end-effector, lets
denote X ∈ R3 the 3D-coordinates of a point in the euclidean
space with respect to the arm basis frame. The ith sensory
vector component of S is then computed along

si = ϕi(X) =


0, if X is not on the body,

exp

(
−K ∥X−Ci∥2

dbody

)
otherwise,

(7)

with i = 1, . . . , S. Ci denotes the center of the ith sensitive
field, K is a normalization constant, and dbody represents the
spherical body diameter, see Figure 4. For the double fingertip
contact case, lets denote X1 the first fingertip 3D-coordinates
and X2 the second fingertip 3D-coordinates. Then, the ith
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Fig. 4. Agent body tactile setup. (Left) The touch sensation is sparsely
reproducing a simulated model of pressure sensors (mechanoreceptors) sen-
sitive to a skin deformation. If the fingertip does not touch the skin, each
mechanoreceptor sends a null signal, otherwise the value of the signal sent
by each mechanoreceptor increases with the decrease of the distance to the
fingertip. (Right) Surface of the body; each sensory vector component ss
depends on the distance between the contact point X and the sth sensitive
field center Cs, s = 1, . . . , S. Note that the simulated receptive field depth
is not infinitesimal, each has the same non-null thickness.

sensory vector component of S is computed along

si = ϕi(X) =


0, if X1 or X2 is not on the body,

max
k=1,2

exp

(
−K ∥Xk −Ci∥2

dbody

)
,

k = 1, 2 otherwise.

(8)

According to Eq. (8), only the smaller distance from each
fingertip is considered. This constitutes a basic formalization
of the masking effect originating from the bigger skin de-
formation. Note that Eq. (7) and (8) both define a surjective
function ϕ from χ to Σ whose dependency to the environment
has been discarded. Note also that, while being used to obtain
the sensation vector S during the simulation, both equations
are not known by the agent, which only has access to the
resulting sensation S.

B. Algorithm

This subsection is devoted to the description of the way the
agent acquires, stores and processes its sensorimotor flow so
as to build the quotient set M/=Ψ .

1) Rough random motor sampling: As already stated, it
is supposed that the agent does not have access to its for-
ward kinematics model f(.). Consequently, the only naive
operation it can conduct consists in randomly sampling its
motor configuration space M by generating P random motor
commands M[p] = (m1[p], . . . ,mM [p])T , each of them being
next associated with a sensation S[p] = (s1[p], . . . , sS [p])

T ,
p = 1, . . . , P . In all the following, a random walk model is
applied to guide the agent motor space exploration, i.e.

mi[p] = mod (mi[p− 1] + µ[p] + π, 2π)−π, i = 1, . . . ,M,
(9)

with µ[p] a realization of the random variable µ ∼ N (0, σ). A
total of L trajectories, sampled with V values, are computed
for each motor component, so that P = L × V . Note that
Eq. (9) is reset every V iterations to start a new random motor
exploration (see the details in Algorithm 1).

2) Sensory vector generation: Each of the P motor config-
urations M[p] is associated to a sensor pose X[p] = f(M[p])
(recall that the agent does not have any access to it), together
with a perception S[p] along S[p] = Ψ(M[p]). Of course,
only a subset of the P sensation vectors are different from 0.
This means that only a subset of the P motor commands has
led to an arm end-effector in contact with the agent body.
Additionally, multiple motor configurations can be related
to the same non-null sensory vector because of the agent
redundancy. But the random motor configuration sampling
prevents the agent from exactly obtaining these sets of motor
commands without any a priori. Consequently, very close
sensations will be regrouped together up to a certain threshold,
so as to estimate the motor quotient set. Let’s now select
N so-called target sensations S(i), i = 1, . . . , N among
all the R non-zero vectors S∗[r] ∈ {S[1], . . . ,S[P ]} ⊂ Σ,
r = 1, . . . , R. The N most distant vectors from each others
are selected here in order to efficiently represent the sensory
space Σ∗, see Algorithm 1 . One can then form the N sets
S(i) regrouping all the S(i) neighbors

S(i) =
{
S∗[r], r = 1, . . . , R | d(S∗[r],S(i)) < δ/2

}
, (10)

with d(.) the Euclidean distance between two vectors and δ a
threshold. Importantly, δ must be selected so as to avoid any
intersection between all S(i), i.e.

δ ≤ min
i,j∈[1,N ]2

d(S(i),S(j)). (11)

3) Kernel space sampling: On this basis, one can then
also form the N kernel sets K(i)

M regrouping all the motor
commands leading to a sensory vector in S(i), with

K
(i)
M = {M∗[r], r = 1, . . . , R | S∗[r] = Ψ(M∗[r]) ∈ Si} .

(12)
In other terms, K(i)

M gathers all the motor commands M∗[r]
such that the consequent sensor pose X[r] leads to a non-
null perception vector S∗[r] in the set S(i). K(i)

M then permits
the definition of an approximation M̂/=Ψ of the quotient set
M/=Ψ along

M̂/=Ψ =
{
K

(i)
M , i = 1, . . . , N

}
. (13)

4) Metric computations and low-dimensional projection:
According to Proposition 2, M/=Ψ contains topological infor-
mation about χ/=ϕϵ

. It is expected that this property still ap-
plies for its discrete approximation M̂/=Ψ . Defining a metric
on M̂/=Ψ will indeed allow one to embed it in an Euclidean
space where topological considerations can be observed. This
can be achieved by considering a low dimensional projection
of M̂/=Ψ , whose properties will depend on the nature of the
contact with the agent body (see §III-A1). Importantly, note
that from the agent point-of-view, such a low dimensional
projection might not be mandatory. This projection is then only
performed here to visualize and interpret the discrete quotient
set M̂/=Ψ built by the agent.

CCA (Curvilinear Component Analysis [15]) is used to
perform such a projection. CCA is a non-linear projection
technique which is used to represent, in a low dimensional
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space, every point in M̂/=Ψ by preserving the topology of
the underlying manifold.

CCA is based on an iterative algorithm exploiting a self-
organized neural network which minimizes a cost function
assuring the conservation of the data topology through local
distances preservation. In comparison with other well-known
linear projection methods (PCA, or Metric Multidimensional
Scalling [16]), CCA is able to deal with highly curved
manifolds and gives better results in high-dimensional spaces
than other non-linear methods [17]. Indeed, other non-linear
dimension reduction algorithms, such as ISOMAP, Locally-
Linear Embedding (LLE) and Laplacian Eigenmaps, have been
tested on the data, but CCA empirically shows here the best
projection results.

This projection is achieved by defining a metric in M̂/=Ψ to
actually obtain its low-dimensional representation. Let’s first
envisage M̂/=Ψ as being a graph G with N nodes defined as
the kernel sets K(i)

M , i = {1, . . . , N}. Each node is connected
to each other through edges weighted by their distances ρ.
Taking two nodes/kernel sets K(i)

M and K
(j)
M in G, one can

then define the (pseudo)-distance ρ(K(i)
M ,K

(j)
M ) along

ρ(K
(i)
M ,K

(j)
M ) = min

M∗[r]∈K
(i)
M

M∗[s]∈K
(j)
M

d(M∗[r],M∗[s]). (14)

This definition does not allow ρ to be a proper distance as
the triangle inequality does not hold. Nevertheless, ρ can be
slightly modified so as to define a proper distance between
kernel sets. For instance, the Dijkstra’s algorithm [18] can be
exploited to find the shortest path between graph nodes. One
then have a new metric ρ̃ defined as

ρ̃(K
(i)
M ,K

(j)
M ) = path length

(
dijkstra(G,K(i)

M ,K
(j)
M )

)
, (15)

where path length() return the sum of distances between two
consecutive nodes in the shortest path returned by dijkstra().

In all the following, ρ̃ is used as the input space metric by
CCA to obtain a low-dimensional representation of χ/=ϕϵ

.
Importantly, the a priori knowledge of the output space dimen-
sion is not mandatory, as CCA itself can be used to estimate
the intrinsic dimension of the input space to be projected.
Such an application has already been proposed in [7] by
the authors, and will not be addressed in this paper. Finally,
Algorithm 1 summarizes all the previous steps, while their
actual implementation is precisely depicted in the provided
additional material.

C. Simulations and results

Let’s now apply Algorithm 1 to the two agents quickly
depicted in §III-A1. As already outlined, it will lead to
two very different representations of the quotient set χ/=ϕϵ

through the building of M̂/=Ψ .
1) First case: single fingertip agent: In such a case, the

tactile sensation S only depends on the 3D position of the
agent’s fingertip on the body, since its orientation does not
have any influence on S. Then, χ/=ϕϵ

can be seen as the
image of the body 3D shape. This is illustrated in the two

Algorithm 1 Computation of the χ low-dim. representation
1: {Step 1: rough random motor sampling}
2: for each of the L motor trajectories do
3: for each of the V motor configurations in the trajectory do
4: Starting from an initial random motor configuration, perform a

random walk, along Eq. (9),
5: Collect the corresponding sensation if it is ̸=0.
6: end for
7: end for
8:
9: {Step 2: kernel set sampling}

10: Pick N target sensations as uniformly as possible among those collected
during step 1.

11: for each of the N target sensations do
12: Cluster the sensations from step 1 that are the closest to the current

target sensation, along Eq. (10),
13: Append the motor configurations linked to these closest sensations in

the corresponding motor kernel set, along Eq. (12).
14: end for
15:
16: {Step 3: computation of the metric}
17: Compute the distance between the kernel sets along Eq. (15).
18:
19: {Step 4 (optional): computation of a low-dim. projection through CCA}

next paragraphs, for two different body shapes (spherical and
cubic).

a) Spherical body: In this first scenario, the agent body is
made of S = 20 tactile receptive fields, thus forming an icosa-
hedral body with a diameter dbody = 100mm. The normaliza-
tion constant in Eq. (7) has been set to K = 20. The body
center is placed at position C = [30, 50, 100]mm (to avoid any
effect of symmetrization) in the frame B0 = (O0, x0, y0, z0)
centered at the root basis of the robotic arm. The rough motor
sampling step is performed with L = 100 trajectories of length
V = 106 samples with a standard deviation parameter σ = 0.1,
while N = 1000 target sensations S(i) distant from a minimal
euclidean distance of δ = 40.10−3 are selected. With all these
parameters, Algorithm 1 is run with a final CCA projection
performed in a 3D space. Such a low dimensional represen-
tation is indeed expected to be sufficient for representing the
body topology. Nevertheless, any other larger dimension could
be used without any other consequences on the conclusion than
the difficulty to interpret the resulting projection. Then, the
CCA output should provide a continuously deformed image
of the original body shape, thanks to the homeomorphism
property between M/=Ψ and χ/=ϕϵ

(see Proposition 2).
But since M/=Ψ is only approximated, it will be supposed
that this property still holds with M̂/=Ψ . Additionally, an
isometric transformation is applied to the 3D CCA output
so as to represent this projection in the euclidean frame
B0 = (O0, x0, y0, z0) of the agent, with a correct orientation
and size. This will allow a direct comparison between the N
target fingertip positions X(i) such that ϕ(X(i)) = S(i), with
the N isometrically-transformed CCA outputs. In practice,
the isometric transformation relies on the Horn’s quaternion-
based method [19], which aims at minimizing the least square
error between the target fingertip positions and the transformed
CCA outputs.

Figure 5 (top) exhibits the simulation results. Subfigure 5(a)
exhibits the ground-truth icosahedral agent body shape to-
gether with an artificial shading that has been added to



7

(a) Target fingertip positions on
the spherical agent body.

(b) Projected low-dimensional
representation of M/=Ψ .

(c) Comparison of the two repre-
sentations.

(d) Target fingertip positions on
the cubic agent body.

(e) Projected low-dimensional
representation of M/=Ψ .

(f) Comparison of the two repre-
sentations.

Fig. 5. Illustration of the agent internal representation for the N target sensations in the robotic 3D frame. (Red) isometrically-transformed internal
representation of N target sensations by the agent, (Blue) original end-effector points that led to the target sensations. From the left to the right: (a/d)
shaded body shape with target sensations on the surface (b/e) shaded recovered body shape (continuously deformed) with represented target sensation along
the surface (c/f) arrows between transformed internal representation and real positions of target sensations on the body with tactile body fields in light gray
and inner contours in green.

enhance its spatial shape. In this subfigure, the blue points
represent the N target end-effector positions X(i) on the body.
Subfigure 5(b) represents the N transformed CCA outputs
with red points. The added shading highlights a continuous
deformation of the body original shape, but the extracted
representation remains topologically similar to a sphere. Such
a deformation might originate from (i) some projection errors
by CCA, but also mainly from (ii) the distances between two
motor configurations which is not maintained between the
two subsequent end-effector poses. Indeed, since the forward
kinematic model f(.) is non-linear, M/=Ψ (and thus its
approximation M̂/=Ψ ) is only homeomorphic to χ/=ϕϵ

, and
not isometric to it.

The blue and red points can be linked by pair as they both
represent the same target fingertip position: one by its real
position on the body (blue), and the other one by its (projected
and isometrically transformed) internal representation (red).
These links are represented by arrow in Subfigure 5(c) .
Clearly, the two sets of points are consistent with each other,
which means that the agent has been able to capture the body
topology by using only sensorimotor information.

b) Cubic body: In order to illustrate the generality of
the proposed approach, a second form of the agent body is
used. This time, S = 12 tactile receptive fields (two by face)
are used together to form a body with a cube shape of length
dbody = 100mm. The normalization constant in Eq. (8) is now
set to K = 10. The body center position, together with the

number of trajectories L, the samples number V and standard
deviation σ remain unchanged, while δ has been now set to
δ = 6.10−3. All the remaining steps in Algorithms 1 are
the same, together with the CCA isometric transformation
mentioned in the first simulation. The results are shown in the
in Figure 5 (bottom), which again exhibits the target points
on the body (blue) and those obtained by the construction of
the internal representation (red). As already shown with the
spherical body, it can be seen that the cubic shape has been
deformed, for the same reason as those highlighted before,
but is still recognizable. In other terms, the body topology has
been correctly discovered by the agent.

2) Second case: double fingertips agent: Let’s now con-
sider the case of the agent endowed with an end-effector
made of two rigidly linked fingers. As outlined in §III-A1,
the quotient set χ/=ϕϵ

will be quite different from the one
obtained in the previous subsection. Indeed, according to
Eq. (8), a sensation S will be generated by the body only
if the two fingertips simultaneously touch the body. Thus,
all the fingertips poses generating the same sensation S are
now entirely described by three independent parameters. This
intuition is shown as correct in the following.

In this subsection, the agent’s body is again made of
the same spherical body than the one described in §III-C1,
with a distance between the two fingertips set to dfingers =
dbody = 100mm. This time, Algorithm 1 is run with a final
CCA projection performed in a 6D space. Consequently, the
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(a) Parameterization of
the sensor pose.

(b) Representation on the actual
agent body

(c) First 3 dimensions of the projected
internal representation

(d) Last 3 dimensions of the projected
internal representation

Fig. 6. (a) One possible parameterization of the double fingertips quotient space χ/=ϕϵ
, with ψ ∈ [−π/2, π/2[ the elevation, θ ∈ [0, π[ the orientation

of the middle-point between the two fingertips in spherical coordinates, and one parameter α ∈ [0, π[ for the rotation along the radial axis. (b) After fixing
three different middle-point positions on the spherical body, trace of fingertips positions (red, green and blue) along the rotation α with the average positions
of its middle point in dark gray. (c) Representation in three chosen dimensions in the representation space of the middle point position. (d) Representation of
the end-effector orientation α in the three remaining dimensions, with circles fitted to the points.

interpretation of such a projection will be far more complex
than when working with a 3D projection like in the first case.
The resulting projection and its corresponding interpretation is
shown in Figure 6. As already outlined, the only poses of the
end-effector in SE(3) which generate a sensation S are those
where the two fingertips are in contact with the body spherical
surface. Such a constraint gives rise to a first interpretation of
the quotient set χ/=ϕ as being the space of latent variables
that describes all the possible configurations of two points
distant by dfingers on a sphere. This space then forms a manifold
subset of SE(3), which can be parameterized with a minimal
number of 3 parameters, so that χ/=ϕϵ

can be seen as a 3-
manifold (manifold of intrinsic dimension equal to 3). One
possible interpretation of these 3 parameters is proposed in
Subfigure 6(a): two angles θ and ψ can be used to define
the position of the middle-point between the two fingers, and
one additional angle α captures the radial axis orientation
of the two fingertips system. With such a parameterization,
every pose of the two contact points, distant by dfingers on the
spherical body and leading to the same sensation S, can then
be obtained.

Thanks to Algorithm 1, an internal (homeomorphic) rep-
resentation M̂/=Ψ of χ/=ϕϵ

is obtained. Its corresponding
6D projection is shown in the two Subfigures 6(c) and (d),
where the first 3 dimensions, followed by the 3 next ones
are represented in two 3D points clouds plots. It is also
shown in the same subfigures three different (arbitrary chosen)
configurations in red, green and blue. Each color corresponds
to fixed θ and ψ values, and to an α angle ranging from 0 to π.
The corresponding configurations on the real agent body are
also shown in Subfigure 6(b). Importantly, they do not exactly
describe a circle on the spherical body because of the discrete
approximation captured by Eq. (12). Subfigure 6(c) exhibits
the first 3 dimensions of the projected internal representation.
It is clear that these 3 first dimensions capture the middle
point (joining the two fingertips) position on a sphere with
a slightly smaller diameter than the spherical body. Indeed,
close middle-points on the body correspond to close points in

this first 3D representation. One additional parameter needs
to be considered to fully capture the internal representation.
Indeed, the 3 next dimensions of the 6D projection of the
internal representation, shown in Subfigure 6(d), exhibits the
influence of the third parameter α, which draws circles on a
2-sphere. Here, each circle corresponds to a specific middle-
point position in the first 3 dimensions, and uniting all of
them then generates a sphere in the 3 last dimensions of the
representation.

Again, all this effort to analyze and interpret the low-
dimensional projection are only performed here to demonstrate
that the quotient set M/=Ψ , and its approximation M̂/=Ψ ,
actually captures the topology of χ/=ϕϵ

. The agent does not
need to perform such a projection to actually use the motor
quotient set. This is illustrated in §IV with a motion planning
application.

IV. MOTION PLANNING IN THE SENSORIMOTOR INTERNAL
REPRESENTATION SPACE

The previous section was devoted to the building of a
sensorimotor internal representation of the body agent. But
why would the agent build such a map? From the authors
point of view, this map is the first step towards the ability to
plan a movement of the agent arm on the body. This section
is mainly concerned with this kind of application, with the
idea that one can infer the successive, never explored, motor
commands to be applied so as to reach a given target sensation.
This target sensation will be provided a priori, i.e. without
any insight on an external goal, purpose or motivation of
the agent. Such a problem is out of the scope of this paper
and is a field of research on its own [20], [21]. From the
mathematical proofs in §II, the continuity property of the
homeomorphism between the motor and pose quotient sets is
exploited to interpolate successive motor commands towards
the sensor pose corresponding to the target sensation. The
proposed algorithm allowing such an interpolation is described
in a first subsection. On this basis, the two representations
shown in §III-C2 are used in the second subsection to generate
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successive, continuous motor orders from one initial sensor
pose to the targeted one.

A. Motor interpolation algorithm

1) First step: towards a path in the motor quotient set
M/=Ψ: The overall objective of the proposed sensorimotor
motion planning approach is to find a motor strategy, which
will allow the agent the reach a given target sensation through
adequate, smooth, changes in the pose quotient set χ/=ϕϵ

.
Thanks to Proposition 2, having smooth changes in χ/=ϕϵ

is
equivalent to smooth changes in M/=Ψ , i.e. in the internal
representation of the agent. Such a property can be easily
obtained by considering a step by step path in M/=Ψ , going
from one kernel set KM ∈ M/=Ψ to the next closest one.
This way, having close kernel sets on the path in M/=Ψ

will conduct to small changes in χ/=ϕϵ
, and then to smooth

changes of the pose of the sensor during the movement.
Recall that M̂/=Ψ can be seen as a graph G = (V,E), with

V = {K(i)
M , i = 1, . . . , N} its nodes and E all its undirected

edges (see §III-B4). Each edge between the ith and jth node is
weighted by the distance dij = ρ(K

(i)
M ,K

(j)
M ). Finding a path

in M̂/=Ψ is then analog to finding an optimal path in a graph,
which is a very common task [22]. The following strategy is
proposed:
(i) Compute a k-nearest neighbor graph Gk = (V,Ek),

where Ek ⊆ E is composed of the k shortest edges
of each nodes. k can be determined without a priori by
optimization, see §IV-B.

(ii) In this graph Gk, compute the shortest path from node
K

(n)
M to node K

(m)
M using Dijkstra algorithm. The re-

sulting path Pnm is then an ordered length T list of
successive kernel indexes (i), i.e.

Pnm = [n = p[1], p[2], ..., p[t], ..., p[T ] = m]. (16)

These two steps are illustrated in Figure 7. The quotient set
M/=Ψ

is made of collection of motor kernel sets K(i)
M . Among

them, a k-nearest neighbor graph Gk is computed, shown in
gray in M/=Ψ

. This graph connects a given motor kernel
set K(i)

M to its k closest neighbors according to the (pseudo-
)distance ρ. From this graph, a path P is extracted (drawn in
black), forming K(p[1])

M to K(p[T ])
M (with T = 4 here).

2) Second step: trajectory in the motor space M: Even
if a path from the initial motor kernel set K(n)

M to the final
one K(m)

M is defined in M/=Ψ
, one still needs to determine

the actual motor configuration M which must be used by the
agent to move. A path must then be computed in the motor
configuration space M between motor kernel sets, but also
inside them. Such a problem is commonly referred to discrete
motor planning in traditional mobile robotics, which is very
common task [23]. Given the objective of minimizing a priori
knowledge of the agent, a simple, straightforward and iterative
interpolation strategy is proposed in this paper.

Lets consider two successive motor kernel sets K
(p[t])
M

and K
(p[t+1])
M in the path Pnm obtained from Eq. (16), and

an initial motor configuration M1 ∈ K
(p[t])
M . The proposed

algorithm follows these steps:

Fig. 7. Representation of the two step approach to plan a movement of length
T = 4 from sensation S(p[1]) to S(p[4]). (i) The quotient set M/=Ψ can be
seen as a graph linking each kernel set it is made of. Using graph exploration
algorithms allows one to define a path P in M/=Ψ from the kernel sets
K

(p[1])
M to K

(p[4])
M . (ii) This path is then propagated in M, where motor

configuration interpolation is performed to move smoothly inside a kernel
set, but also from one kernel to an other.

(i) determine the motor configuration M3 ∈ K
(p[t+1])
M such

that

M3 = arg min
M∗[p]∈K

(p[t+1])
M

d(M∗[p],M1). (17)

M3 is thus the closest motor configuration in the t+ 1th

kernel set of the path Pnm to M1. But jumping from
M1 to M3, i.e. directly from one motor kernel set to an
other, is suboptimal w.r.t. to the interkernel distance. An
additional, intermediate, motor configuration M2 is then
computed.

(ii) determine the motor configuration M2 ∈ K
(p[t])
M such

that
M2 = arg min

M∗[p]∈K
(p[t])
M

d(M∗[p],M3). (18)

M2 thus defines an additional motor configuration in the
tth motor kernel set of the path Pnm.

(iii) interpolate I intermediate motor configuration between
M1 and M2, but also between M2 and M3 with any
interpolation function g(.) (in this paper, the interp1
MATLAB function is used).

These three steps are then repeated from one motor kernel set
to another inside the path Pnm. The implementation of this
interpolation in M is summarized in Algorithm 2. A detailed
version of this algorithm is also provided in the additional
material; in addition to the three steps mentioned above, the
detailed algorithm exhibits an optimization which is performed
to find the trajectory minimizing the maximal inter-kernel
distance, among all the trajectories starting from a random
motor configuration in the initial motor kernel set.
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This simple approach is illustrated in Figure 7. The motor
configuration space M is made of multiple motor kernel
sets K(i)

M . The path found according to §IV-A1 in the motor
quotient set M/=Ψ allows one to select successive motor
kernel sets in M, starting from K

(t[1])
M to the final one

K
(t[4])
M in this illustration. Figure 7 also shows the three motor

configurations M1, M2 and M3 determined for the two first
kernel sets of P . The trajectory in M exhibits different kind
of movement. The first movement, going from M1 to M2, is
performed inside the motor kernel set K(p[t])

M . It then produces
a movement of the arm letting invariant the fingertip pose in
χ/=ϕϵ

. The second movement, going from M2 to M3, is
made between the two motor kernel sets K(p[t])

M and K(p[t+1])
M .

An interpolation then defines successive intermediate motor
configurations from one motor kernel set to another. As already
outlined, given the homeomorphism property existing between
M/=Ψ and χ/=ϕϵ

, such successive close motor configura-
tions are expected to correspond to successive close fingertip
poses, i.e. the arm end-effector should smoothly go from one
pose to another. This is verified in the next subsection.

Algorithm 2 Motor interpolation
1: {Step 1: path in the discrete quotient set M̂/=Ψ}
2: Compute a k-nearest neighbors graph Gk from graph M̂/=Ψ using the
ρ̃ pseudo-metric defined in Eq.(15).

3: Find the shortest path P in the graph Gk from the initial kernel set to
the final one.

4:
5: {Step 2: trajectory in the motor configuration space M}
6: Find iteratively the successive motor configurations M1, M2 and M3

in M using §IV-A2 to go from one kernel set to the next one in the path
obtained from step 1.

7:
8: {Step 3: interpolation between motor configurations in M}
9: Use interpolation between the motor configurations from step 2 to obtain

the actual successive motor commands to be applied to the system.

B. Results

Algorithm 2 is run on the spherical and cubic body de-
scribed in §III-C1. In each case, the graph G contains N =

1000 nodes, one for each motor kernel set K(i)
M corresponding

to 1000 target sensations S(i), and almost 5 · 105 edges. The
number of edges is quickly reduced by computing the k-
nearest neighbors graph Gk. While the number k of neighbors
can be given a priori, it can also be selected by running
successive iterations of Algorithm 2 and finding the value
producing the minimum maximal inter-kernels distance.

One then needs to define starting and ending target sensa-
tions; these are selected here so that the corresponding poses
of the arm end-effector on the body are the farthest possible
to each other. The starting and ending poses are shown by the
green (start) and blue (end) poses respectively on Subfigure 8
(a) and (d) (more generally, the color conventions between
Figure 8 and 7 are identical to ease the interpretation). The
optimal number of neighbors k is found to be k = 12
and k = 15, leading to a path P of length T = 7 and
T = 6, for the spherical and cubic body respectively. This
path, while being computed directly in the discrete internal
representation M̂/=Ψ , can also been visualized in its 6D

representation shown in the two Subfigures 6(c) and (d). The
same representation is shown again in Subfigures 8(b) and
(c), together with the motor path P drawn with black lines. In
these two subfigures, nodes/motor kernel sets in P are shown
as red circles, while the corresponding initial and final sets are
again in green and blue respectively. As already outlined, the
path P in M̂/=Ψ must then be propagated in the actual motor
configuration space M of the agent using the second step of
Algorithm 2. The resulting successive motor configurations
M1, M2 and M3 (iteratively computed for each motor kernel
set) lead to three poses X1, X2 and X3 shown as red crosses
in Subfigure 8 (a) and (d). Next, additional interpolated motor
configurations are added in between, leading to the changes in
the end-effector pose shown in blue dotted lines. As a result,
a trajectory of the arm end-effector (i.e. the two fingertips ),
from the initial pose to the final one on the agent body, is
extracted. Subfigure 8(a) also shows identical numbers [i] on
the trajectory. This number, which represents a lightweight
notation for K

(p[i])
M indicates that the two concerned end-

effector poses are obtained from the same motor kernel set (i.e.
are obtained with a movement from M1 to M2 inside the same
motor kernel set). These poses should then be theoretically
identical, but the discrete approximation M̂/=Ψ of M/=Ψ

prevents this. Nevertheless, it can be seen from these two
trajectories computed for two different body geometries, that
the end-effector stays smoothly inside the tactile fields of the
body along the consequent trajectory. As expected, it moves
almost straightly between motor kernel sets, even though the
transitional end-effector poses are quite far from each other
w.r.t. the body scale1.

V. CONCLUSION

This paper studies the construction of a sensorimotor rep-
resentation of a naive agent’s tactile space. Before actually
focusing on a specific modality, a careful generic mathematical
formalization of the notion of ”sensorimotor invariants” is
proposed. Based on the properties of motor and sensor pose
quotient sets, it demonstrates that an internal motor represen-
tation of all reachable sensor poses is accessible to the agent
by exploration of its sensorimotor invariants. On this basis, a
simulated robotic system, endowed with an arm and a body
with tactile capabilities, is introduced so as to illustrate how
such a representation can be actually built. An algorithm is
then proposed to obtain a low-dimensional projection of it,
allowing one to understand and interpret the resulting graph.
Tested with two tactile body geometries, and two end-effector
configurations, results show that the proposed approach can
be exploited by the agent to obtain a sensorimotor image of
its own body, with minimal a priori information. Then, as
an illustrative application, this internal motor representation
is used to generate motor commands. While based on a
discrete approximation of the quotient sets, a second algorithm
iteratively provides interpolated motor commands producing a
smooth arm movement, as expected by the theory.

1Two video attachments have been uploaded together with this submission.
They show the movement performed by the agent for the two cases in
Subfigure 8 (a) and (d).
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(a) Spherical body (b) Sph. body: M̂/=Ψ 3 first dim. (c) Sph. body: M̂/=Ψ 3 last dim. (d) Cubic body

Fig. 8. Motion planning, performed with the agent endowed with two fingertips, and for a spherical or cubic body. The two trajectories on the actual agent
body are shown in (a) and (d) for the two body geometries. The corresponding path in the discrete motor quotient set M̂/=Ψ , where the interpolation is
actually performed, is shown in (b) and (c) for the spherical body. The same color conventions as in Figure 7 are used.

The proposed formalism, while illustrated here with an
agent endowed with tactile capabilities, is explicitly written
in very generic terms. It can then be applied to other sensory
modalities, like vision, as partially shown by the authors in [9].
Concerning the tactile modality, this paper is philosophically
close to the approach by A.A. Frolov in [24]. But the pro-
posed work goes far beyond the estimation of dimension like
in [8], as an abstract representation emerges from the sole
sensorimotor interaction of the agent with its own body. Fur-
thermore, it can also be exploited by the agent to actually reach
any target sensation. Importantly, the proposed formalism is
rooted in purely sensorimotor considerations. Consequently,
the obtained internal representation only appears thanks to the
sensorimotor invariants of its own interaction, and can thus
not be considered as an objective representation of the world,
as outlined by K. O’Regan in [4].

From now on, can we finally say that the agent is actually
“perceiving” the world? It is clear that the conclusions outlined
in this paper are at best limited to the agent body. Even
if the proposed framework is expected to be the first step
towards a more complete mathematical formalization of the
sensorimotor approach, one still needs to bridge the gap with
the environment in which the agent is immersed. Extending
the internal representation to capture invariant properties of
the interaction between an agent and its environment will
undoubtedly constitute a challenging task. However this is
mandatory to bring out the more generic notion of “space
perception”, which will allow the agent to differentiate itself
from the environment, and thus to elaborate the notion of distal
perception.

APPENDIX A
PROOF OF PROP. 2: M/=Ψ IS HOMEOMORPHIC TO χ/=ϕϵ

.

The following definitions and propositions are quite classi-
cal mathematical considerations [25], [26]. They are recalled
for self-containedness.

Let X be a topological space endowed with the topology
T , ∼ be an equivalence relation, and X/∼ = {x ∈ X|x ∼
y, y ∈ X} be the quotient space of X with respect to ∼. Let’s
denote π : X → X/∼ the natural surjective map from each

point in X to its equivalent class. Then one can endow X/∼
with the quotient topology Tπ by taking the open sets in X/∼
that are also open sets in X through π−1, i.e.

Tπ = {U ⊆ X|π−1(U) ∈ T }.

This constitutes the finest topology on X/∼ such that π is
continuous. This leads to the following propositions.

Proposition 3. Let X and Y be topological spaces. The
surjective map f̂ : X → Y is called a quotient map if it
has the property :

U is open in Y ⇔ f̂−1(U) is open in X.

Proposition 4. Let f̂ : X → Y be a continuous surjective
map. If f̂ is a closed map (takes closed sets in X to closed
sets in Y ) then f̂ is a quotient map.

Proof. Let’s show the property from proposition 3 :
⇒ Note U an open set in Y . f̂ continuous implies that f̂−1(U)
is open in X .
⇐ Let’s take U a subset of Y such that f̂−1(U) is open in
X . Thus the complement f̂−1(U) = X − f̂−1(U) is closed
in X . f̂ being a closed map, f̂(X − f̂−1(U)) = f̂(f̂−1(Y )−
f̂−1(U)) = f̂(f̂−1(Y −U)) = Y −U = U is closed. Thus U
is open in Y .
Thus f̂ is a quotient map.

Proposition 5. Let f̂ : X → Y be a continuous surjective
map. If X is compact and Y is Hausdorff, then f̂ is a quotient
map.

Proof. Note C a closed set in X . Since X is compact, C
is compact too. Thus f̂(C) is a compact subset of Y , and
since Y is Hausdorff, f̂(C) is a closed set in Y . f̂ is then
a closed map, hence thanks to Proposition 4, f̂ is a quotient
map too.

Proposition 6. Let f̂ : X → Y a continuous surjective map
and =f̂ the induced equivalence relation. Set

X/=f̂
= {x ∈ X|f̂(x) = y ∈ Y }
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the quotient space of X with respect to f̂ , let π : X → X/=f̂

be the projection from any point x ∈ X to its equivalent class
Kx = {a ∈ X|a =f̂ x}, and give X/=f̂

the quotient topology
Tπ defined above. If X is compact and Y is Hausdorff, then
the function h : X/=f̂

→ Y defined as follows: for all x ∈ X ,
h(π(x)) = f̂(x), is a homeomorphism.

X Y

X/=f̂

f̂

π
h

Proof. To prove that h is a homeomorphism it is sufficient to
show that (i) h and (ii) h−1 are continuous, and that (iii) h is
a bijection.
(i) Let’s show that h−1 is continuous: from Proposition 5,

f̂ is a quotient map. Let V be an open set in X/=f̂
,

V ∈ Tπ , and π−1(V ) ∈ T , so it is an open set in X .
Since π−1(V ) = f̂−1(h(V )), and since f̂ is a quotient
map, then h(V ) is open in Y . Thus ĥ−1 : Y → X/=f̂

is
continuous.

(ii) Let’s show that h is continuous: note U ⊂ Y an open
set in Y . Since π−1(h−1(U)) = f̂−1(U), and since
f̂ is continuous, then f̂−1(U) is open. Consequently,
h−1(U) ∈ Tπ is open too, so that h is continuous.

(iii) From the application of the first isomorphism theorem,
one can directly say that h is a bijection.

Thus, h is a homeomorphism.

Applying Proposition 6 with X = M compact, Y = χ/=ϕϵ

Hausdorff, and f̂ = πϕϵ ◦f a continuous surjective function by
composition of two continuous surjective functions, leads to
the proof that there exists a homeomorphism between M/=f̂

and χ/=ϕϵ
. Since M/=f̂

= M/=Ψ (=f̂ is equivalent to
=Ψ thanks to the bijection between χ/=ϕϵ

and Σ), then
Proposition 2 follows.

REFERENCES
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