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Abstract— Making systems able to autonomously adapt them-
selves to changes in their own body or in their environment is
still a challenging task questioning a lot of different scientific
communities. Many works propose either sophisticated adaptive
model-based or learning-based techniques, as a solution. Most
of them rely on the traditional perceive/decide/act framework,
inspired by our human intuition about how we perceive the
world. But recent contributions have shown that it is possible
for an agent to discover the structure of its interaction with
the environment or its own body via the so-called sensorimotor
flow. This work is rooted in this paradigm, and a method for the
building of an internal representation of the agent body is pro-
posed. Importantly, it does not require any a priori knowledge
nor model. A careful mathematical formalization is outlined,
together with simulations demonstrating the effectiveness of the
approach.

I. INTRODUCTION

Can a mobile agent perceive its environment without
any model nor on its environment neither on itself? More
and more researchers from different scientific fields (psy-
chophysics, artificial intelligence, philosophy, . . . ) raise this
question, which is of particular importance when dealing
with autonomous mobile robotics. Indeed, using a priori
models of the environment can make robotic systems really
fast, efficient and robust when executing complex predefined
tasks. But in the same time such systems may have diffi-
culties to behave autonomously, namely to adapt themselves
to unknown environments that have not been modeled or
learned before –except by considering that an universal
model could be obtained from a learning procedure, as
proposed by the Bayesian Perception Theory [1]–.

The proposed approach follows a different path, paved
by Poincaré more than 100 years ago [2], [3]. In this
line of research, what is called perception is not an innate
capacity. It is something which is learned and can not be
separated from motor action. Indeed, this sensorimotor flow
carries fundamental informations about the external space
and its geometry [4]. For instance, Poincaré states that the
external space dimension can be extracted from it by an agent
endowed with several motor degrees of freedom and sensors
whose outputs depend on the 3D position of the system.
More generally, the sensorimotor flow indeed reveals some
correlations, i.e. sensorimotor contingencies [5], which are
invariant and carry information about the external environ-
ment of the agent. Philipona et al. proposed a mathematical
formulation of this idea, but not by using proprioceptive
signals as suggested by Poincaré, but by exploiting sensor
outputs signals instead [6]. The demonstration is based on
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the study of the sensory manifold and on its dimension. On
this basis, the authors have been able to prove Poincaré’s
intuitions but only when using infinitesimal movement ampli-
tudes. Such a limitation –originating from the use of standard
linear mathematical tools– does not allow any experimental
validation of the approach. Bootstrapping methods have been
proposed to solve this problem [7]. For instance, Laflaquière
et al. succeeded in extending the approach to much more
realistic movement amplitudes by coupling a motor bootstrap
technique with a Curvilinear Component Analysis (CCA)
[8]. But all these approaches were criticized by Frolov in [9],
claiming that they require a stable external environment
during the exploration. Indeed, these works postulate some
a priori on the environment that cannot be obtained by
the sensory system only. As a solution, Frolov introduced
a body endowed with tactile sensors and a mobile arm.
While proprioceptive signals still encode the arm movements,
the arm end-effector has to touch the body itself so as to
ensure a stable perception, thus obtained without any prior
hypothesis on the environmental state. Following another
way, Laflaquière et al. have shown that, beyond the dimen-
sion of space, it is also possible to obtain an external space
representation by using appropriate partitions of the motor
space [10], resulting in a much more motor oriented than
sensor oriented framework. In this contribution, each end-
effector position of an arm is represented by the subset of the
motor configurations letting invariant the sensory state, the
so-called kernel manifolds. But the limitations pointed out
by Frolov apply here again, as a stable environmental state
is still required. More generally, the learning of sensorimotor
relationships –be it for obtaining a representation of the agent
body and/or the environment– has received more attention
recently. For instance, an online learning framework for the
building of low-dimensional sensorimotor maps is proposed
in [11]. Sensorimotor embedding is also proposed in [12]
as a new approach to the dimensionality reduction problem
faced by many works when trying to extract spatial/geometric
knowledge from the raw sensorimotor flow.

This paper is focused on the extension of Laflaquière
approach to the building of an internal representation of an
agent body, in the vein of Frolov’s previous work. The kernel
manifolds used in [10] will be precisely mathematically
formalized, and some proofs relying on the isomorphism
theorems will demonstrate the relevance of this framework
for the building of such a representation. It will then be
shown that an internal representation of an agent body can
be obtained via the matching of proprioceptive and tactile
signals using a CCA technique. The paper is organized as
follows. §II is devoted to the mathematical foundations of
the kernel manifolds defined in [10]. Next, §III extends
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Fig. 1: Used robotic system. It is made of M = 5 degrees of freedom, each
of them being controlled via a motor command mi, i = {1, . . . ,M} and
moving the end-effector in the 3D space. Blue dots represent revolute joints,
green dot depicts spherical joint, and red dot sketches for the end-effector.

this mathematical formalization to the case of an agent
endowed with a tactile-like sensor, and proposes a simulation
setup and results which illustrate the building of an internal
representation of the agent body. Then, a short discussion is
proposed in §IV. Finally, a conclusion ends the paper.

II. REPRESENTATION OF AN AGENT’S WORKING SPACE

Laflaquière showed in [13] through simulations how a
partition of the motor space, i.e. the aforementioned kernel
manifolds, can be used to represent the position of a robotic
arm end-effector in the 3D space. In this section, a careful
mathematical formalization of these kernel manifolds is
provided through the introduction of equivalence classes, on
which it becomes possible to apply the isomorphism theo-
rems. This formalization will then serve as the main support
throughout this article to show how to obtain an internal
representation of the body without a priori information.

A. Mathematical foundations

As a first step, this subsection is devoted to the formal-
ization of the building of an internal representation of an
agent’s working space. For the sake of simplicity, an arm-
type robotic agent compelled to move in the 3D space will be
used to illustrate the demonstration, while not being limited
to.

1) Notations: The proposed robotic system, whose kine-
matics is inspired by traditional industrial robots, is com-
posed of moving rigid parts, each of them being con-
nected to each other via a joint parameterized by a scalar
mi ∈ R, i = {1, . . . ,M}, see Fig. 1. The motor con-
figuration of the agent is entirely described by the vec-
tor M = (m1,m2, . . . ,mM )T ∈M, with M∈ RM the
so-called motor configuration space, and .T the trans-
pose operator. Thanks to these motor commands, the end-
effector of the system is able to move in the so-called
working space χ ∈ R3. In all the following, let’s denote
X = (x1, x2, x3)T ∈ χ the end-effector position vector.
Thanks to the forward kinematics model of the system f(.),
the end-effector position X can be computed from the motor
configuration M , i.e. X = f(M). Due to the possible
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Fig. 2: Schematic representation of the different spaces involved in the paper.
M is the motor space, χ is the working space, Σ is the sensory space,
M/=f and M/=Ψ both represent the internal representation of χ and Σ
respectively.

agent’s redundancy, f can be surjective, as different motor
configurations can lead to the same end-effector position.

2) Demonstration: On this basis, one can now define
the equivalence relation =f between any pair of elements
(M1,M2) of M with

M1 =f M2 ⇔ ∃X ∈ X , f(M1) = f(M2) = X. (1)

Proposition 1. The quotient set of M with respect to =f is
isomorphic to χ.

Proof. It follows that =f is by definition the equivalence
kernel of f . For any M ∈ M such that f(M) = X , let’s
now denote by KM the equivalence class of M , with

KM = {R ∈M | R =f M ,∀R ∈M} . (2)

KM can then be modded out to form the quotient setM/=f
,

with

M/=f
= {KM |M ∈M} . (3)

According to the first isomorphism theorem, if f is surjective
(i.e. if the agent is redundant), then M/=f

is isomorphic to
χ.

3) Interpretation: Figure 2 highlights the relationships
between M, χ and M/=f

. Regrouping all the motor
commands leading to the same end-effector position X in
the same set KM defines a so-called motor kernel manifold
(gray area). Each kernel manifold can then be conceptually
represented in M/=f

by a point thanks to the equivalence
relation =f (dotted line), each of them being also linked to an
end-effector position X (brushed lines). Then, according to
the previous subsection, it appears thatM/=f

is isomorphic
to χ. In other terms, M/=f

can be used by the agent as an
internal representation of its working space χ.



B. Discussion

Proposition 1 states that the quotient set M/=f
is an

excellent candidate for representing the working space X .
But M/=f

can only be built by regrouping all the motor
commands leading to same end-effector position. How can
the agent know that its end-effector position is not actually
changing when it moves? Indeed, the naive agent has only
access to its sensorimotor flow, made of its motor commands
and exteroceptive data originating from sensors possibly
equipping the system. The question is then: is there any
other way to obtain an internal representation of X based
on this sensorimotor flow? The authors have shown in a
previous contribution that this can be achieved thanks to
the introduction of a new kernel set which trades “invariant
end-effector position” for “invariant sensation” [10]. This
idea has been successfully assessed in simulations with a
visually-inspired modality, while not being mathematically
formalized. This will be extended in the next section, which
will be illustrated with a tactile-inspired sensory modality. It
will then make the agent able to build –without any a priori–
an internal representation of a subset of its working space:
its own body.

III. TACTILE REPRESENTATION OF AN AGENT’S BODY

The previous section was devoted to the building of the in-
ternal representation of an agent’s working space. As already
argued, it is postulated that this internal representation can
be discovered by an agent endowed with adequate sensing
capabilities. Among others, the focus is put on the tactile
modality in the following, while not being necessarily limited
to. It will be proved in the first subsection that this will
allow an agent endowed with an arm and a body covered
with tactile receptive fields to build an internal representation
of its own body. Then, the agent setup used in simulation
to illustrate the building of this internal representation is
detailed in a second subsection. Finally, simulations results
are provided in the last subsection.

A. Dealing with sensory inputs

The agent described in the previous section is deprived
from sensory inputs, and is thus unable to form any repre-
sentation of its working space by itself. Consequently, the
existence of M/=f

is not relevant to the agent, since it
will not be able to build it without any a priori knowledge.
Suppose now that the system is endowed with sensing
capabilities, and is thus able to have access to a sensation
vector S = (s1, s2, . . . , sS)T ∈ S, with S ∈ RS the sensory
space. For any vector X ∈ χ, one can obtain the sensation
vector S through the forward sensory function φ(.) : X → S
so that S = φ(X). Importantly, by further restricting S to
Σ = Im (φ), φ can be rendered surjective from χ to Σ. In
other words, Σ is the set of all “physically” reachable sensory
states, and will thus also be called the sensory space. As
illustrated in Fig. 2, a given motor configuration M can
now be associated to a sensation vector S thanks to the
application Ψ = φ ◦ f . On this basis, and with the same

reasoning as in §II-A, the equivalence kernel of Ψ can be
formed along

M1 =Ψ M2 ⇔ Ψ(M1) = Ψ(M2). (4)

Proposition 2. The quotient set ofM with respect to =Ψ is
isomorphic to Σ.

Proof. Lets denote K̃M the equivalent class of M , i.e.

K̃M = {R ∈M | R =Ψ M ,∀R ∈M} , (5)

which can be modded out to form the quotient set M/=Ψ

M/=Ψ
=
{
K̃M |M ∈M

}
. (6)

Again, thanks to the first isomorphism theorem, if Ψ is
surjective, then Σ is isomorphic to M/=Ψ

.

Importantly, one can show that if φ is also injective,
then M/=f

and M/=Ψ also become isomorphic. In other
words, since M/=f

is isomorphic to the working space χ,
then M/=Ψ

is also isomorphic to χ. The authors have
already exploited this property in a previous work dealing
with the learning of the agent spatial configuration [10].
In this past work, the forward sensory function φ(.) was
representing a retina-like sensor whose outputs were sensitive
to lights placed in the vicinity of the robots, thus making
the agent able to build an internal representation of X .
This present work is more concerned with a tactile-like
modality, which will be used by the agent to build an
internal representation of a subset Xb of X : its own body.
Considering the physics of this modality, it is clear that φ(.)
will be defined as a surjective function. Indeed, it is obvious
that ∀X /∈ Xb, φ(X) = 0. Working with the restriction
φ|Xb

: Xb → Σ∗ allows then to form a bijective sensory
function, since it seems reasonable to hypothesize that two
different end-effector positions on the agent body lead to two
different sensory vectors. Consequently, with ψ = φ|Xb

◦ f ,
the quotient set M/=Ψ

, –which is built by considering all
the motor commands leading to the same sensory vector–
can be used to represent any vector X ∈ χb, thus making
the agent able to build a representation of its own body.

B. Simulation setup and algorithm

A simulated robotic system (i.e. the agent) is used in all
the following to illustrate 1/how M/=Ψ

can be built from
the sensorimotor flow of the simulated agent, and 2/how
M/=Ψ

can be used to represent its body. The agent is
made of a spherical body covered with S tactile receptive
fields and a multi-DoF arm identical to the one used in
§II (see Fig. 1). The arm basis and the spherical body
are sticked together, so that only the arm is able to move
according its M = 5 degrees of freedom. Importantly,
the entire approach does not require any a priori, so that
the agent does not have access to its forward kinematics
model f(.). Consequently, the only naive operation it can
conduct consists in generating P random motor commands
M (p) = (m

(p)
1 , . . . ,m

(p)
M )T , each of them being associated

with a perception S(p) = (s
(p)
1 , . . . , s

(p))
S )T , p = 1, . . . , P .
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Fig. 3: Agent setup. (Left) The arm touches at X ∈χ
b

the spherical body
endowed with S tactile receptive fields, thus producing the sensory vector
S ∈ Σ∗. (Right) Surface of the body; each sensory vector component ss
depends on the distance between the contact point X and the sth sensitive
field center Cs, s = 1, . . . , S. Note that the simulated receptive field depth
is not infinitesimal, each of them having the same non-zero depth.

1) Rough random motor sampling: In all the following,
the agent explores its motor space by using a random walk
model applied to each component of the pth motor vector
M (p), i.e.

m
(p)
i = mod

(
m

(p−1)
i + µ(p) + π, 2π

)
−π, i = 1, . . . ,M,

(7)
with µ(p) a realization of the random variable µ ∼ N (0, σ).
A total of L trajectories, sampled with V values, are com-
puted for each motor component. Eq. (7) is reset every V
iterations to start a new random motor exploration, see §III-
B.6.

2) Sensory vector generation: Each of the P = V × L
motor configuration M (p) of the agent is associated to a
position X(p) of the end-effector, together with a perception
S(p) along S(p) = Ψ(M (p)), whose ith sensory vector
component is computed along

s
(p)
i = φi(X

(p)) =


0, if X(p)is not on the body,

exp

(
−K ‖X

(p) −Ci‖2
dbody

)
otherwise,

(8)
with i = 1, . . . , S. Ci denotes the center of the ith sensitive
field, K and dbody being a normalization constant and the
spherical body diameter respectively. Of course, only a subset
of the P sensation vectors are different from 0. Additionally,
multiple motor configurations are related to the same non-
null sensory vectors because of the agent redundancy. But
the random motor configuration sampling prevents the agent
to exactly obtain these sets of motor commands without any
a priori. Consequently, very close sensory vectors will be
regrouped together up to a certain threshold, so as to estimate
the motor quotient set.

3) Kernel space sampling: Let’s now select N so-called
target sensory vectors S∗i , i = 1, . . . , N among all the
R non-zero vectors S∗(r) ∈ {S(1), . . . , S(P )} ⊂ Σ∗,
r = 1, . . . , R. The N most distant vectors from each others

are selected here in order to efficiently represent the sensory
space Σ∗, see III-B.6. One can then form the N sets Si

regrouping all the S∗i neighbors

Si =
{
S∗(r), r = 1, . . . , R | d(S∗(r),S∗i ) < δ/2

}
, (9)

with d(.) the Euclidean distance between two vectors and δ
a threshold. Importantly, δ must be selected so as to avoid
any intersection between all Si, i.e.

δ ≤ min
i,j∈[1,N ]2

d(S∗i ,S
∗
j ). (10)

On this basis, one can then also form the N kernel sets
Mi regrouping all the motor commands leading to a sensory
vector in Si, with

Mi =
{
M∗(r), r = 1, . . . , R | S∗(r) = Ψ(M∗(r)) ∈ Si

}
.

(11)
Mi allows then to define an approximation M̂/=Ψ of the
quotient set M/=Ψ along

M̂/=Ψ
= {Mi, i = 1, . . . , N} . (12)

With M̂/=Ψ , the agent has now built an internal represen-
tation of its own body. While not being mandatory for the
agent, M̂/=Ψ

can also be projected to a lower dimension
so as to be able to interpret this representation. This is
performed thanks to a final CCA step.

4) Metric computations: The internal representation space
M̂/=Ψ contains the topological information about the
agent’s body. A metric can be defined in this internal space
so that data can be projected in a low dimensional space
with CCA. Let’s take two points Ui and Uj in this internal
representation, both of them being related to the kernel sets
Mi and Mj respectively. The distance ρ between these 2
points in M̂/=Ψ

can be computed with

ρ(Ui, Uj) = min
M∗(r)∈Mi

M∗(s)∈Mj

d(M∗(r),M∗(s)). (13)

This distance is not a proper metric, as the triangle inequality
does not hold. But experiments show that this simple distance
definition is sufficient to capture kernel sets distances in
practice.

5) CCA projection: CCA is a non-linear projection tech-
nique which will be used to represent in a low dimensional
space every points in M̂/=Ψ

by preserving the topology of
the underlying manifold. In this paper, the projection will be
performed in a 3D-space, which is the smallest dimension re-
quired to preserve the representation of the body. Again, this
projection is only performed here to visualize and interpret
the internal representation built by the agent. Consequently,
considering a 3D projection does not bring any a priori in
the system. For more details on the CCA method, a complete
description of the algorithm can be found in [14] and an
example application by the authors in [8].

6) Algorithm: All the previous steps are summarized in
the Algorithm 1. This algorithm will be now used to obtain
the internal representation of the agent body for different
cases in the next subsection.
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Fig. 4: Illustration of the agent internal representation for the N target sensations in the robotic 3D frame. (Red) transformed internal representation of
N target sensations by the agent, (blue) original end-effector points that led to the target sensations. From the left to the right: (i) spherical body with an
highlighted slice of data, (ii) links between transformed internal representation and real positions of target sensations on the body in a (xy) plan cut of the
spherical body, (iii) cubic body with an highlighted slice of data, (iv) (yz) plan cut of the cubic body.

C. Simulations and results

1) Spherical body: In this first scenario, the agent body
is made of S = 20 tactile receptive fields, thus forming
an icosahedral body with a diameter dbody = 100mm. The
normalization constant in Eq. (8) has been set to K = 20.
The body center is placed at position C = [80, 50, 350]
(to avoid any effect of symmetrization) in the frame
B0 = (O0, x0, y0, z0) centered at the root basis of the robotic
arm, see Fig. 3. The rough motor sampling step is performed
with L = 10 trajectories of length V = 106 samples with
a standard deviation parameter σ = 0.1, while N = 1000
target sensory vectors S∗i distant from a minimal euclidean
distance of δ = 40.10−3 are selected.

With all these parameters, Algorithm 1 is run and then
produces a 3D representation of the agent body. While vi-
sualizing this CCA projection could be sufficient to interpret
the consequent representation, an additional isometric trans-
formation is applied to the CCA output so as to represent
this projection in the set X . This will allow to directly
compare the N target positions X∗i such that φ(X∗i ) = S∗i ,
with the N transformed CCA outputs. In practice, the iso-
metric transformation relies on the Horn’s quaternion-based
method [15], which aims at minimizing the least square
error between the target positions and the transformed CCA
outputs. Importantly, it is postulated that the resulting RMSE
between these two sets of representation can be used to
measure the quality of the obtained internal representation.

Figure 4 exhibits the simulation results. Lets focus on
the first two left subfigures for now, in which blue and red
points represent the N target end-effector positions X∗i and
the N isometrically-transformed CCA outputs respectively.
The first subfigure exhibits the entire icosahedral agent body,
while the second one focuses on the yellow slice of it
so that information about thickness and depth of the body
can be seen. The blue and red points can be linked by
pair as they both represent the same target position: one
by its real position on the body (blue), and the other one
by its (projected and transformed) internal representation
(red). These links are represented by dotted lines in the
second subfigure. As shown in Figure 4, the two sets of

point are relatively closed to each other, which means that
the agent is able to capture the body geometry by using
only sensorimotor information. This is confirmed via the
small RMSE which is as low as 17.6mm, representing a
relative error of 17.6% w.r.t. the body size. This error can
be easily lowered by using smallest target neighborhoods, but
at the cost of a higher computational cost. Indeed, a small
δ value will lead to a lower collection of sensations and
motor commands, which can be countered by a finest –but
computationally longer– random exploration by the agent.

2) Cubic body: In order to illustrate the genericity of
the proposed approach, a second form of the agent body
is used. This time, S = 6 tactile receptive fields are used
together to form a body with a cube shape of length dbody =
300mm. The normalization constant in Eq. (8) is now set
to K = 0.2. The body center position, together with the
number of trajectories L, the samples number V and standard
deviation σ remain unchanged, while δ has been now set to
δ = 6.10−3. All the remaining steps in Algorithms 1 are
the same, together with the CCA isometric transformation
mentioned it the first simulation. The results are shown in
the two right subfigures in Figure 4, which again exhibits the
target points on the body (blue) and those obtained by the
construction of the internal representation (red).It can be seen
that the cubic shape has been relatively well approximated,
with a RMSE of 32.68 mm representing 10.9% of the cubic
body size.

IV. DISCUSSIONS

The proposed approach allows to obtain an internal map of
the agent body from the sensorimotor flow. But why would
the agent build such a map? From the authors point of
view, this map is the first step towards the ability to plan
a movement of the agent arm on the body. Indeed, first
very preliminary results indicate that this can be achieved
through very naive interpolation approaches, i.e. one can
infer the motor commands to be applied so as to reach
a target sensation never felt by the agent before. In other
terms, the proposed internal representation can be genera-
tive. But one have to keep in mind that the isomorphism
theorems exploited all along the paper do not provide any



Algorithm 1 Generation of the internal representation
L: random walk trajectories number
V: trajectories length
N: number of target sensations on the body
S∗i : ith target sensation
δ: minimum distance separating target sensations
Mi: kernel set for target sensation S∗i
σ: max step size for random exploration
d(·,·): Euclidean distance
ρ(·, ·): distance between kernel sets
Ψ(·): sensorimotor function
Require: N, δ, L, σ, V
1: {Rough random motor sampling}
2: r=1;
3: for l = 1 : L do
4: % Initialization with a random motor configuration
5: M(0) = (m

(0)
1 , · · · ,m(0)

M ) = 2π (rand(M, 1)− 0.5) ;
6: for v = 1 : V do
7: % Random walk, along Eq. (7)
8: M(v) = mod

(
M(v−1) + σ randn(M, 1) + π, 2π

)
− π;

9: % Collect the corresponding sensation
10: S(v) = Ψ(M(v));
11: if S(v) 6= 0 then
12: M∗(r) = M(v);
13: S∗(r) = S(v);
14: r = r + 1;
15: end if
16: end for
17: end for
18: R = r; % Total number of non-null sensations
19:
20: {Kernel set sampling}
21: S∗

1 = S∗(randi(R)); % Pick randomly a sensation among R;
22: for i = 2 : N do
23: Find first r ∈ [1, R] such that d(S∗(r),S∗

j ) ≥ δ, ∀j < i;
24: S∗

i = S∗(r);
25: end for
26: % Append the satisfying motor configurations to the kernel set
27: for i = 1 : N do
28: for r = 1 : R do
29: if d(S∗

i ,S
∗(r)) ≤ δ/2 then

30: Append M∗(r) to Mi

31: end if
32: end for
33: end for
34:
35: {Computation of the metric}
36: for i = 1 : N do
37: for k = 1 : N do
38: D(i, k) = ρ(Mi,Mk);
39: end for
40: end for
41:
42: {Computation of a low-dimensional projection through CCA}
43: C = CCA(D);
44: return C

continuity proof. In practice, the interpolations performed on
the internal map are consistent, thus suggesting that a rich-
est mathematical structure –possibly involving topological
considerations– might be introduced. These aspects are being
investigated, together with the extension of the proposed
formalism to the building of an internal representation of the
peripersonal space outside the body, and the evaluation of the
approach genericity to various kind of agent body structure.
Importantly, the provided mathematical proofs show that if

the agent is able to build motor kernel manifolds by touching
its own body, then an internal representation of it can be
build. This might imply kinematics constraints (like the need
of motor redundancies) which must be carefully identified.

V. CONCLUSION

Is a system able to build an internal representation of
its own body, without any other information than its motor
commands and the subsequent sensory information? This
work has proposed a first positive answer to this question. For
that purpose, basic mathematical proofs have been written,
showing that motor quotient sets are ideal candidates for
the representation of the end effector position within the
agent working space. Then, the paper has focused on the use
of a tactile-like modality. Together with the adequate motor
quotient set, we have shown in simulation how a naive agent
can build its own internal body representation. Results show
that the global topology of the body is preserved, exhibiting
a small error between target points on the body and their
corresponding representative in the internal representation,
the comparison being possible only after a CCA and an
isometric transformation.
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