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Abstract— Developmental Robotics offers a new approach
to numerous AI features that are often taken as granted.
Traditionally, perception is supposed to be an inherent capacity
of the agent. Moreover, it largely relies on models built by the
system’s designer. A new approach is to consider perception as
an experimentally acquired ability that is learned exclusively
through the analysis of the agent’s sensorimotor flow. Previous
works, based on H.Poincaré’s intuitions and the sensorimotor
contingencies theory, allow a simulated agent to extract the
dimension of geometrical space in which it is immersed without
any a priori knowledge. Those results are limited to infinitesimal
movement’s amplitude of the system. In this paper, a non-linear
dimension estimation method is proposed to push back this
limitation.

I. INTRODUCTION

Traditional AI has revealed many of its limits in past
decades, notably through the low adaptability of models
it relies on. Developmental Robotics attempts to overcome
some of those issues by letting agents learn their own models
with minimal a priori knowledge. One fundamental aspect
of this learning process is perception as it conditions how the
agent will get and analyze information. Usual methods are
based on models developed in pattern recognition and signal
processing inherited from Marr concepts of perception [12].
They have since been called passive perception [2], [1]
as they operate independently of the agent action on its
environment.

Passive perception has been reconsidered for some time
by many authors [3], [9]. and new paradigms of active
perception have arisen. According to O’Regan and Noe
sensorimotor contingencies theory [9], the experience of per-
ception would not be the activation of internal representations
but the capacity to engage oneself in some structure of
interaction with the environment. Taking inspiration from
Poincaré’s argumentation [13] on what he called sensible
space, Philipona et al. [6] proposed a mathematical formal-
ism to explore the sensorimotor contingencies theory. In [8],
they describe an algorithm allowing a simple simulated agent
to estimate the dimension of the geometrical space in which
it is immersed without any a priori information but its
sensorimotor flow.

In two recent papers [4], [10], we proposed to take back
Philipona’s simulation and to prove the viability of the
approach with a more bio-realistic and complex auditive
modality. However, we were limited to a tangential study
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of the sensory manifold through unrealistic infinitesimal
movements. Our goal in this paper is to exceed this linear
limitation and to reach a reasonable amplitude of movement
for a robot. This limitation can be overcome using non-
linear projective methods, such as the Curvilinear Compo-
nent Analysis (CCA) [5]. Unfortunately, the non-sphericity
of the distribution may prevent CCA to correctly project
data in lower dimension space. Our main goal in this article
is to overcome this difficulty by proposing a new active
unstretching method. It mainly consists in modifying the
exploration, leading to a better data distribution in terms of
stretching. As such, our model is affiliated to bootstrapping
methods.

The article is divided into eight sections including this
introduction and the conclusion. Section II is devoted to
the theoretical background, giving an overview of the di-
mensionality estimation problem and some mathematical
formalizations. Sections III and IV respectively describe the
simulation and the linear dimension estimation algorithm.
Next section presents the dimension estimation of curved
manifolds, while section VI copes with non-sphericity of the
data. The article ends with a discussion in section VII.

II. THEORETICAL BACKGROUND

A. Poincaré’s intuition

In 1895, H.Poincaré exposed his view on geometry in
”L’espace et la géométrie” [13]. His aim was to define
geometry from the standpoint of a totally naive brain which
can only have access to its sensorimotor flow. For that
purpose, Poincaré emphasizes that the sensory space, defined
by all our nervous fibers, doesn’t share the homogeneity,
isotropy and dimensionality properties with the geometric
space we perceive. But all of these properties can be inferred
from specific sensitive changes. In particular, some sensory
variations can be identified as external and compensable. Be-
ing external means they occur without any motor commands.
Being compensable means that they can be compensated by
a motor command so that the initial sensory state, before
the external and motor changes, and the final sensory state,
after the external and motor changes, are identical (see
Figure 1). Those specific sensory variations are called dis-
placements. According to H.Poincaré, displacements are the
root of the notion of geometrical space. More precisely, the
displacements of any agent-environment system constitute a
(algebraic) group whose dimension is directly related to the
dimension of the geometrical space perceived by the agent.



Fig. 1. Illustration of a compensation. After the environmental change and
the motor change, the sensation on the retina is the same as in the initial
state.

B. Mathematical formalization

Poincaré’s intuition on perception of the geometrical
space’s dimension has been mathematically formalized by
D.Philipona in [7]. For any sensitive and active agent in
an environment, Philipona assumes that sensations generated
through exploration lie on a differential manifold embedded
in the (possibly high-dimensional) sensory space. Let E be
the environmental state (column) vector, M the agent’s motor
state vector and S the agent’s sensory state vector. Then the
aforementioned sensory manifold is generated through the
sensorimotor law ' so that:

S = '(C),with C =

✓

M
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◆

, (1)

where C denotes the system’s configuration vector. Now
consider an arbitrary reference sensory state S0 = '(C0)

together with the space of sensory variations dS around S0.
One can write:

dS =

@'

@M |C0

dM +

@'

@E |C0

dE. (2)

One can identify two subspaces in this equation:
• The subspace of sensory variations {dS

dE=0} due to
motor changes only,

• The subspace of sensory variations {dS
dM=0} due to

environmental changes only.
Then, the transversality property allows writing:

d = e+m� b, (3)

where b is the dimension of {dS}, e is the dimension of
{dS

dM=0}, m is the dimension of {dS
dE=0} and d is

the dimension of the intersection {dS
dM=0} \ {dS

dE=0}.
It is fundamental to understand that the sensory variations
that can be generated both through environmental or motor
changes actually lie in this intersection. In other words,
{dS

dM=0} \ {dS
dE=0} is the system’s displacements sub-

space. The dimension d of this intersection is thus the
dimension of the algebraic group of displacements. Note
that this development is true in the vicinity of the reference
point C0. Indeed, the dimensions m, e, b and d can vary
depending on C0.

To sum up, the geometrical space’s dimension perceived
by a naive agent can be inferred from the dimensions of 3

sensory manifolds generated when: only the agent moves,
only the environment moves and when both move.

III. SIMULATION PRESENTATION

A simple agent-environment system is proposed in order
to illustrate how m, e and b can be estimated. The whole
simulation is divided into two modules (see Figure 3). The
first part, outlined in this section, simulates the system,
i.e. the interaction between the agent and its environment.
The second module estimates the intrinsic dimension of the
sensory manifold on the basis of the sensorimotor flow only.
Methodologies for dimension estimation are described in
the following sections. The simulated system consists in
two subsystems immersed in a three-dimensional geometrical
space (see Figure 2):

• A head with two eyes, standing as the agent.
• N

sources

punctual light sources, standing as the envi-
ronment.

These are carefully described hereafter.

A. Interaction modelization

1) The agent: The head is set up with two eyes made
of a pinhole lens before a flat square retina dotted with 20
light-sensitive cells (called ”cones” in the following). The
reference world frame is centered on the head and aligned
with the interaural frame when the head is in its initial
position. Initially, the head’s center is in [0, 0, 0] cm, the
left eye’s pinhole is in [�5, 5, 5] cm, the right eye’s pinhole
is in [5, 5, 5] cm and the retina of each eye is 1 cm behind
its lens. The head can rotate freely along pitch (↵

h
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). As a
result, the whole agent configuration is defined by 9 angular
parameters. Each cone position on the retina is randomly
drawn in [�1, 1]2 cm. The sensation s

i

generated by a cone
i on any retina (left or right) is:

s
i

=

Nsources

X

k=1

✓

a
exp

�

� dist(cone
i

, proj
k

)

2
�

dist(eye, source
k

)

2

◆

, i 2 {1, 20},

(4)
where a is the cones sensitivity, arbitrarily set to 10

�3, dist(.)
depicts the Euclidean distance, cone

i

is the retinal position
of the i-th cone, proj

k

is the retinal position of the k-th
source projection, eye is the center of the eye in the world
referential and source

k

is the position of the source in the
world referential.

2) The environment: The N
sources

punctual light sources
lie on a 1-meter radius sphere centered on the head. The
position of each source is defined by its azimuth ✓ (angle
between the sagittal plane and the source) and its elevation
� (angle between the transverse plane and the source). Each
source can move freely and independently on the surface of





   













Fig. 2. Schematic of the system. The agent is a head with two independent eyes. The environment is made up of souces on a 1-m sphere centered on
the head. Each eye has a square retina randomly dotted with cones. Each cone is excited by the projection of sources on the retina. Finally, the sensory
vector for any given configuration of the system is the concatenation of all the cones’ excitations.

the sphere. The environmental configuration is then defined
by N

sources

⇥ 2 parameters.

B. Simulation overview

Initially, a set of N configuration vectors C
i

,
i = {1, . . . , N}, is randomly drawn around a working
point C0, with:

C
i

= (r
h

, r
l

, r
r

, ✓1, . . . , ✓Ns ,�1, . . . ,�Ns)
T

i

, (5)

and stored in the matrix C = (C1, . . . , CN

). The maximal
amplitude for all configuration parameters is chosen between
10

�6 and 10

+1 degrees. As already presented in II-B, 3

different cases can be considered: only the agent moves,
only the environment moves and both move. Note that
depending on the kind of exploration performed, a part of the
configuration vector C

i

is forced to be constant and equal
to its reference value. Each vector C

i

generates a sensory
vector S

i

of length n through the sensorimotor law ' (see
Equation 1). Let note �S

i

the sensory variation generated
thereby:

�S
i

= S
i

�S0 = '
�

C
i

�

�'
�

C0

�

,with i = {1, . . . , N}. (6)

The N sensory variations vectors �S
i

generated by C are
stored in the n ⇥ N data matrix S = (�S1, �S2, . . . , �SN

).
Finally, the data S is centered and reduced before being ana-
lyzed by the dimension estimation module. In the following,
the dimension estimation algorithm is presented and applied
to determine m, e, b, and thus d through Equation (3).

Fig. 3. Schematic of the simulation.

C. Simulation parameters

In this paper, the following parameters values are ex-
ploited. For each maximal amplitude of movement in
{10

�6, 10�5, 10�4, 10�3, 10�2, 10�1, 10�0, 10+1
} degrees,

these are:

• 3 successive simulations: only the agent moves, only
the environment moves and both move.

• N = 1000 movements for each exploration.
• 20 cones by eye, which leads to a sensory space of

dimension n = 40.
• N

sources

= 3 sources in the environment.
• 100 successive trials of the whole process (all random

parameters are redrawn) for statistical results.

IV. LINEAR DIMENSION ESTIMATION ALGORITHM

The second module represented in Figure 3, whose role
is to estimate the intrinsic dimension of the data stored in
S, is described in the following. Various algorithms can be
applied to perform such an estimation. A linear algorithm is
first described in this section. Non-linear methods are then
assessed in Section V.

A. The linear algorithm

The linear dimension estimation algorithm has already
been presented in our previous paper [10]. Only the main
elements are recalled in this subsection. The linear approach
is based on a Singular Value Decomposition (SVD) of the
data matrix S. Let dim be the intrinsic dimension of the
manifold. The estimated dimension ddim is then obtained
through:

ddim = argmax

j

n

⌃

j

⌃

j+1

o

, 8j 2
⇥

1,min(n,N)� 1

⇤

, (7)

where ⌃

j

are the singular values of the matrix S in de-
creasing order. The estimated dimension is then equal to
the number of significative singular values, as the ratio is
maximal at the boundary between significative and non-
significative values, see [10].

B. Results with the linear method

The performance of the linear dimension estimation
method in relation to the maximal amplitude of movement
is presented in this subsection. Performances are defined as
the percentage of correct dimension estimations over the 100

successive trials. The correct intrinsic dimension m is 9 as
the agent has 9 degrees of freedom (see III-A.1). It is 6 for
e as each of the 3 light sources has 2 degrees of freedom
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Fig. 4. Illustration of the CCA algorithm on a simple example. The projection of the initial data 4(a) in a 3-dimensional space 4(b) or a 2-dimensional
space 4(c) preserves data topology. On the contrary, the projection in a 1-dimensional space destructs topology as there are not enough dimensions to
unfold the initial manifold. As expected, the projection error J(3) is null and there is a gap between J(2) and J(1).

(see III-A.2). Finally, as designer of the system, we know that
the 3 rotations centered on the head are its only compensable
movements. The dimension d of the displacements’ algebraic
group is then 3. (Note that if translations of the head
and of the sources were allowed, this dimension would
be 6, as they would be compensable too). According to
Equation (3), the correct intrinsic dimension b is then 12.
Figure 6 shows that the performance of the linear method
is good for a maximal movement amplitude set to 10

�6

degrees, but drops progressively for greater magnitudes. This
can be explained by the increasing curvature of the S data
distribution when movement amplitude increases [10]. One
can also notice that the drop is slower in the e-case (i.e.
when only the environment moves). This might be due to a
lower curvature of the data distribution than in the 2 other
types of exploration.

The problem faced when considering non-infinitesimal
amplitude of movement in the system is the non-linearity
of the sensorimotor law ', which might lead to curved
sensory manifolds. The linear method is then unsuitable
when considering realistic amplitudes of movement for a
robotic or biologic agent. In the following, a non-linear
dimension estimation method will be selected to cope with
this curvature issue.

V. DIMENSION ESTIMATION OF NON-LINEAR MANIFOLDS

Dimension estimation of a manifold is a well formalized
and an easily solved problem when its curvature is null.
However, this estimation is still challenging when dealing
with curved manifolds in a high-dimensional space. For
more information about non-linear methods, a comparative
overview can be found in [11], [14].

A. Non-linear method

In all the following, the dimension estimation relies on
a projection method: the Curvilinear Component Analysis
(CCA) [5]. Indeed, it has been experimentally proven that
CCA gives better results in high-dimensional spaces than
other methods, even if the manifold is highly curved [11].
Moreover, its complexity is O(N) whereas other equivalent
methods present a O(N2

) complexity.
CCA is an iterative method projecting data from a n-

dimensional to a p-dimensional space, with p  n. For
that purpose, a self-organized neural network is exploited

to minimize a cost function J(p) assuring the conservation
of the data topology through local distances preservation.
More information about the algorithm can be found in [5].
The value of J(p) at the last iteration represents how well the
local distances have been respected when projecting the data.
In all the following, the initial and final learning rates are set
to 5.10�1 and 5.10�4, the initial and final neighborhood are
set to 4 and 0.2, the number of points is set to N = 1000

and the number of iterations to K = 100 (see [5] for more
information about these parameters).

B. Non-linear dimension estimation

The non-linear dimension estimation method is based on
the computation of the cost function J(p), with p 2 [1, 15].
Note that max(p) is set to 15 so as to limit the high
computational cost of the whole process. The projection error
J(p) is small when p � dim. Indeed, in this case, there
are enough embedding dimensions to unfold the manifold
while preserving its topology. On the contrary, the projection
error becomes significant when p < dim, as the manifold
unfolding is performed to the detriment of its topology
conservation. So, the ratios of successive projection costs
exhibit a maximum at the boundary between significative
and non-significative projection costs values. Consequently,
the estimated intrinsic dimension of the dataset ddim is

ddim = argmax

p

nJ(p� 1)

J(p)

o

, 8p 2 [2, 15]. (8)

Figure 4 illustrates the principle of the dimension estima-
tion algorithm based on CCA on a simple distribution. In
this example, a 2D manifold embedded in a 3D space is
successively projected on 3D, 2D and 1D spaces. For each
projection, the cost function J(p) is provided, exhibiting its
correlation with the topology conservation.

C. Results with the non-linear method

The aforementioned CCA algorithm is now tested on the
data originating from the simulated system presented in §III.
In the following, the simulation parameters are the same as
in part III-C, and the number of CCA iterations is set to
K = 100. Results are reported on Figure 6. It shows that the
CCA is not able to precisely estimate each dimension. More
precisely, m and b are never correctly estimated, while the
performance for e is only around 40% for all amplitudes. But
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while the overall performance of the method is surprisingly
low, one can notice that it does not vary with the movement
amplitude. This seems to indicate that the curvature is not
at the origin of the bad estimations, which are more likely
caused by the data distribution properties. This hypothesis
will be investigated in the next section.

VI. A BOOTSTRAP APPROACH TO THE DIMENSION
ESTIMATION PROBLEM

Among all possible data distribution properties, curva-
ture and data density are known to be well addressed by
CCA [11]. Nevertheless, the non-sphericity of the data distri-
bution can be a major cause of failure for the algorithm. The
notion of sphericity, similar to the stretching of the dataset,
is first discussed. Then, an iterative unstretching approach
is proposed. Finally, this method is combined with CCA to
provide a new dimension estimation technique.

A. Stretching of the data

In order to understand the notion of non-sphericity, a
simple illustration is provided in Figure 5. In this example, a
noise-free 2D linear dataset is stretched in a 3D hypercube.
In this case, the diagonal explains a very large part of the
data variance while other orthogonal directions support very
few or none. If the stretching is too strong, every non-linear
dimension estimation algorithm will fail in finding the right
intrinsic dimension of the distribution (dim = 2) and will
instead find ddim = 1. Even though one can argue that this
result is correct –because all directions orthogonal to the di-
agonal can be considered as noise–, a linear algorithm would
compute the correct intrinsic dimension 2 as this manifold is
flat. This poor performance of non-linear algorithms in the
stretched case is due to their inherent tolerance to changes
along axis with small variance. For instance, the projection
of the 2D manifold in Figure 5 would lead to projection
errors J(2) and J(1) being both very small, while J(1)
was expected to be significantly greater than J(2), like in
Figure 4.

To insure an accurate estimation of the manifold’s di-
mension, the strongly-stretched case must be avoided. The
preliminary centering and reduction of the data doesn’t solve
the problem. Indeed the reduction may have no impact on
the manifold’s shape, as illustrated in the previous example
(see Figure 5) where the data already spans the same range
on each axis of the 3D space. A better solution is to
perform a PCA on the dataset and to normalize its variance
along eigenvectors. Note that this process makes sense only

for linear or very slightly curved manifolds. However, this
approach has one major drawback: the normalization can
lead to a huge noise amplification if the data’s variance
along some axis is similar or smaller than noise’s variance. In
order to avoid this problematic noise amplification, an active
unstretching method is proposed in the next subsection.

B. The bootstrapping
1) Relevance of an active unstretching: The shortcoming

of the PCA/reduction approach is to consider only the
final sensory data, but not the way it has been generated.
During the reduction, noise is then likely to be reshaped,
reduced or amplified along with the data. On the contrary,
generating new data by modifying the system’s movements
can lead to a better exploration of the manifold (in terms of
stretching), while maintaining a constant level of noise. The
goal of the unstretching method is to modify the system’s
movements so that the data presents a similar variance
along the dim axis underlying the manifold. Of course, it
doesn’t affect its dimension dim which only dependents of
the agent-environment interaction’s properties. The way the
system moves regards only the portion of the whole sensory
manifold actually explored during the experiment.

2) Presentation of the bootstrapping: The original active
unstretching approach outlined in this paper is an iterative
method of resampling (bootstrap) based on a SVD. Let C(b)

be the configurations matrix (defined in §III-B) at the b-th
bootstrapping iteration. As already mentioned, a data set S
is generated by C(b) through the sensorimotor law ' (see
Equation 1). The singular value decomposition of S provides
a n ⇥ n unitary matrix U, a N ⇥ N unitary matrix V and
a n⇥N diagonal matrix ⌃ with non-negative real numbers
on the diagonal, such that:

⌃ = USVT. (9)

The singular values ⌃

j

of S are sorted in decreasing order
on the diagonal of ⌃, with j = {1, . . . ,min(n,N)}. The
right singular vectors stored in the columns of V are linear
combinations of the N command vectors of C(b). The first
min(n,N) of them are directly related to the singular values
⌃

j

. They form a base V in which the variability of S can be
explained.

The bootstrapping method consists in a modification of
the exploratory commands C(b) so that the singular values
⌃

j

tend to be identical at the iteration b + 1. Moreover,
the maximal amplitude of movement allowed must remain
constant. Finally, the algorithm is made of the following steps
for iteration b  B:

• S is obtained through S = '(C(b)
);

• S and C(b) are normalized by their maximum value as
absolute values are meaningless in following steps and
max(|C(b)

|) is denoted Cmax;
• A SVD is applied to S, providing the matrix V from

which is extracted V;
• V is expressed in the initial base of dof (the degrees of

freedom exhibited in equation 5):

V

0
= C(b)

V; (10)



The column vectors of V 0 may contain useless compo-
nents that have no influence on the sensory variation
around the working point. They could be either dis-
placement or redundancy of the command system. They
are invisible for the bootstrap as its inputs are sensory
variations, but they can still be amplified as its out-
puts are system commands. To avoid their uncontrolled
amplification, those components are removed from V

0

using the 4 following steps.
• The remaining vectors of V are expressed in the initial

base of dof:

V

0
2 = C(b)V

⇣

1 . . . N,
�

min(n,N) + 1

�

. . . N
⌘

; (11)

The column vectors of V 0
2 cover the part of the dof space

that do not generate sensory variations.
• A SVD is performed on V

0
2, providing [U2,⌃2,V2

]

such that ⌃2
= U2

V

0
2(V

2
)

T .
• The singular values ⌃

2
j

greater than a threshold of 1

are considered significative. Their related left singular
vectors U2

j

form the base U of commands that don’t
generate sensory variations.

• Useless components are removed from V

0:

V

0
= V

0
� UU

+
V

0 (12)

where + depicts the pseudoinverse.
• C(b) is expressed in the base V

0:

C(b)0
= (V

0
)

+ C(b), (13)

Entries of the command vectors of C(b)0 are then
directly related to the singular values ⌃

j

.
• Vectors of C(b)0 are reshaped:

C(b+1)0
= �C(b)0, (14)

where � is a diagonal matrix defined by:

diag(�) = [�1, . . . ,�min(n,N)], with (15)

�

j

= min
n

ln(⌃1/⌃j

) + 1, L
o

. (16)

Command vectors are thereby amplified along the di-
rections that previously generated the lowest variance
in the sensory space. The logarithmic function and the
threshold coefficient L limit the influence of high ratios
due to strong initial stretching or noise which can lead
to very small ⌃

j

values. In this implementation, L is
arbitrary fixed to 10.

• Vectors of C(b+1)0 are expressed in the initial config-
uration base:

C(b+1)
= V

0C(b+1)0. (17)

• Vectors of C(b+1) are normalized:

C(b+1)
=

Cmax

max(|C(b+1)
|)

C(b+1). (18)

The maximal amplitude for a configuration parameter
is then identical before and after the iteration. Without,
this step, amplitudes would diverge as C(b)0 reshaping
has been done through amplification of entries.

• The whole process is repeated until convergence of the
singular values of S, or for a given number of iterations
B.

3) Discussion on the bootstrap algorithm: Strictly speak-
ing, the whole aforementioned algorithm only makes sense
for linear or slightly curved manifolds, as it is based on a
SVD of the data matrix. Two strategies are then proposed to
integrate it in the exploration strategy:

• In order to respect the linearity hypothesis, the boot-
strapping is performed with an infinitesimal movement
amplitude (typically 10

�6 degrees). A last exploration
is then executed with a command set C(B+1) which
corresponds to C(B) amplified to reach the desired
movement amplitude.

• The bootstrapping is directly performed with the desired
movements amplitude.

In the first case, the behavior and convergence of the boost-
raping is guaranteed but the influence of greater commands
on the data distribution is not taken into account. In the
second case, no infinitesimal amplitude is necessary but the
good behavior of the bootstrapping cannot be guaranteed.
For example, curvature can prevent the algorithm to stretch
the data variance along one axis without affecting other
ones. Consequently, singular values can converge toward
distinct magnitudes instead of a common one during the
bootstrapping. This approach may however be sufficient to
reach more realistic movement magnitudes, thus allowing the
implementation on a real robotic platform.

C. Results of the non-linear method with bootstrapping

The performance of the CCA method with the 2 boot-
strapping strategies, in relation to the maximal amplitude of
movement, is discussed in this section. For each maximal
amplitude of movement, the simulation parameters are the
same as in §III-C. Moreover, the number of bootstrap itera-
tions is set to B = 10.
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Figure 6 shows that the performances of the non-linear
method with boostraping are better than with the two
previous methods. It shows that, with a more symmetric
distribution, CCA can handle curvature as its performance
is satisfactory up to amplitude 10

�1 degrees (100 degrees
for e), where the linear method performance is already very
poor or null. Between the 2 bootstrapping strategies, the
infinitesimal one has better performance for the greatest am-
plitudes. This result was expected as this strategy guarantee
the good behavior of the bootstrapping for any amplitude. On
the contrary, the second strategy doesn’t seem to converge
to interesting solutions when movements amplitude, and so
curvature, becomes too important. However, even with the
infinitesimal bootstrap, performance decreases for amplitudes
greater than 10

�1 degrees. This slight drop could be due to
unexpected data distribution that is not taken into account
while performing the infinitesimal bootstrap, but more prob-
ably to CCA that needs an increasing number of iteration
and points when the manifold curvature grows.

VII. DISCUSSION

The non-linearity of the sensorimotor law ' leads to
curved sensory manifolds, making linear methods inadequate
when dealing with realistic movement amplitudes. Moreover,
the basic non-linear method shows poor estimation perfor-
mance because of the stretching of the data distribution.
With the active resampling process the non-linear method
based on CCA is able to estimate dimensions m, e and b.
However, their performances decrease for too great ampli-
tudes. This drop is due to the limitation of the underlying
linear hypothesis when considering the bootstrap with finite
amplitudes. For the infinitesimal bootstrap strategy, it might
be due to unexpected data distribution, but more probably to
a limitation of CCA which needs more iterations when the
manifolds curvature increases.

The non-linear method proposed in section VI pushes
back the linear limitation introduced in [8]. However, the
best results are obtained with the infinitesimal bootstrapping
method which doesn’t respect the goal of finite movement
amplitude. The finite amplitude bootstrapping exhibits cor-
rect performances up to movements of 10�1 degrees, which
can be considered as a reasonable amplitude for robotic
systems and make conceivable an implementation on a real
platform. Nevertheless, even greater or unlimited amplitudes
would be an interesting objective to validate Poincaré’s
intuition, specially for biological agents. To do so, the
bootstrapping process should be replaced by a non-linear
intelligent exploration strategy to guarantee that the data
distribution presents symmetry properties good enough for
any non-linear dimension estimation method. A dynamical
study of the whole system, instead of the static study
presented in this paper, could also be a way to surpass the
current limitations.

VIII. CONCLUSION

An active and model-free feature extraction approach from
a high-dimensional dataset has been presented in this paper.

It is based on the idea that the perception can be considered
as an experimentally acquired ability, exclusively learned
through the analysis of an agent’s sensorimotor flow. This
purpose is illustrated with a simple simulated system, in
which the agent is able to estimate the dimension of the
geometrical space in which it is immersed. This is made
possible thanks to the use of an original data analysis
approach, relying on a non-linear dimension estimation al-
gorithm mixed with an active resampling strategy. Results
show that, contrarily to previous linear approaches, realistic
movement magnitudes are now accessible to the agent. This
will allow us to work in a close future on the validation
of this theory on real robotics platforms. Finally, this work
opens up a new way to consider space perception. The
estimation of its dimension is only a preliminary step towards
the structuring of space from the point of view of the active
agent. The base V (see equation 9) already provides us a way
to move in the displacements space and could lead in future
work to goal oriented behaviors of the agent. At last, the
sensorimotor analysis approach used in this paper could be
applied to other fields of perception. The features extracted
with such tools would be intrinsically meaningful for the
agent and could lead to new IA algorithms.
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