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Summary
In the context of robot perception, a new set of methods for self-supervised sensorimotor learning
has emerged lately. These methods try to extract robot and environment configuration information
from a set of sensorimotor cues, with no use of any a priori knowledge. This paper is concerned
with such methods, in the context of binaural robot audition. An incremental algorithm is proposed,
relying on an auditory evoked behavior which allows a robot to orient its head toward a sound
source. During the learning process, this evoked behavior is used in order to gather auditive and
proprioceptive data before and after the head has moved to face the sound source. An auditorimotor
map can then be constructed. Thereafter, when the source plays again near a set of previously learned
configurations, the robot can use the auditorimotor map to infer a motor command that would make
it face the source. In other terms, the robot has learned from past sensorimotor experiences how to
localize a sound source in the space of its own motor azimuths. In the present article, we offer an
experimental validation of the evoked behavior and put to the test an offline version of the algorithm.
The auditory evoked behavior implementation being sufficiently accurate, our results show a good
localization performance using the learned auditorimotor map.

PACS no. 43.60.Np, 43.66.Pn

1. Introduction

Robotics is a fertile research topic, with a large
community working together to endow robotics plat-
form with control, sensory, and information process-
ing since decades. Today a robot is endowed with ad-
vanced capabilities, ranging from perception to deci-
sion and action, with the aim to make it fully au-
tonomous and adaptable to changes in its environ-
ment or in its own body. In this field, Robot Audition
is a recent topic, mainly concerned with sound local-
ization, speech enhancement and recognition, gener-
ally for human/robot interaction in realistic acous-
tic conditions. A lot of contributions on these prob-
lematics have been proposed in the last 15 years, ei-
ther rooted in the binaural [1] or array processing
paradigm [2].

Historically, most initial contributions to robot au-
dition were concerned with binaural approaches. How-
ever, the proposed algorithms exhibit mixed results in
realistic conditions. Nevertheless, recent active binau-
ral techniques, coupling the robot movement with the
induced auditory variations, have demonstrated their
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effectiveness for sound localization applications [3].
This paper is grounded on such ideas, and proposes an
original sensorimotor-based approach to sound source
localization. Other works in this field can be cited, all
of them aiming at extracting robot and environment
configuration information from a set of sensorimotor
cues, with no use of any a priori knowledge [4, 5, 6, 7].
Among all this work, a binaural auditory learning al-
gorithm has proved during simulation to provide a
reliable way for a robot to learn the localization of a
sound source in azimuth [8]. This iterative algorithm
relies on an auditory evoked behavior allowing a robot
head to orient itself toward the sound source. During
a step of the learning process, a white noise is played
anywhere near the robot head and this evoked be-
havior is used in order to gather auditorimotor data
before and after the head has moved to face the sound
source. An auditorimotor map can be constructed on
the fly from the concatenation of initial auditory cues
and final motor configurations. Thereafter, when the
source plays again near a set of previously learned
configurations, the robot can use the auditorimotor
map to infer a motor command that would make it
face the source. In other terms, the robot has learned
from past sensorimotor experiences how to localize a
sound source in the space of its own motor azimuths.
After a sufficient number of learning iterations, the
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Figure 1. BinnoBot, a mobile binaural and binocular head.

robot is able to use motor command inference instead
of the evoked behavior so as to face the source.

In the present article, we offer an experimental
validation of the evoked behavior and put to the
test an offline version of this sensorimotor learning
algorithm [8]. A robotic platform named BinnoBot
has been devoted to this task (Fig. 1). It consists
of a mobile binaural head equipped with two (un-
used) eyes-mimicking video cameras. It is controlled
by the action of four motors: two for the neck az-
imuth and elevation, two for the eyes orientation.
Each manipulation was done in an anechoic cham-
ber, real-world scenarios falling to further studies. The
auditory evoked behavior implementation being suffi-
ciently accurate, our results show a good localization
performance using the auditorimotor map. These re-
sults therefore validate the sensorimotor learning al-
gorithm in a robotic context.

This paper is organized as follow. Section 2 intro-
duces the auditory model used as front-end for sound
localization, then presents the evoked behavior and
the auditorimotor map based localization in their sen-
sorimotor context. Section 3 provides an evaluation of
the auditory evoked behavior and of localization accu-
racy in a set of robotic experiments. Finally section 4
discusses the obtained results and paves the road to
further studies.

2. Material and Methods

This section first introduces the front-end auditory
model used for binaural sound localization. A senso-
rimotor definition of sound localization is then pre-
sented. The auditory evoked behavior and the audito-
rimotor map based localization are finally introduced.

2.1. Auditory Model

The bioinspired auditory model presented herein com-
putes cues related to the interaural level difference
(ILD), a cue well known to be involved in sound local-
ization in the high-frequencies range [9]. This model
includes a pair of artificial pinna providing a spatial

directivity suitable for active sound localization [10],
a pair of gammatone filterbanks used as a cochlear
model [11], transduction and integration steps and fi-
nally a binaural stage estimating the ILD.

The cochlear model decomposes the signal captured
by a microphone into a set of c frequency channels.
Let xl(t) be the audio signal captured from the left
ear and G = {Gi}i∈[1,c] be the cochlear filterbank, the
left cochlear output is given as gl(t) = {Gi(x

l(t))}.
The transduction step then converts gl(t) into a mul-
tichannel action potential train pl(t) by extracting the
positive local maxima of the signal, where we have for
each channel i ∈ [1, c]:

pli(t) =

{
gli(t) if dgl

i(t)
dt = 0 and gli(t) > τ

0 else
(1)

where τ is the threshold of minimal activity required
for an action potential emission. Thresholding de-
emphasizes the low intensity parts of the cochlear out-
put and is used in Sec. 3 to suppress the motor noise
caused by head movements of the robot. The instan-
taneous energy sl(t) is then computed from pl(t) over
a constant time window, and we have for each channel
i ∈ [1, c]:

sli(t) =

t∑
t′=t−T

pli(t
′)
2
, (2)

where T is the integration duration. Once integrated,
the signal sl(t) is undersampled at the frequency fs =
2/T .

The energy sr(t) is obtained from the right audio
signal xr(t) in the same way. Therefore, given the
left and right energies sl(t) and sr(t), the ILD signal
sild(t) is finally computed as follow for each channel
i ∈ [1, c]:

sildi (t) =
2sli(t)

sli(t) + sri (t)
− 1. (3)

If the cochlear filterbank activity stays below the
threshold τ during the whole time window, that is
when we have sli(t) = sri (t) = 0, the ILD vector is
not defined and we assign the value sildi (t) = 0. More-
over we have from (3) sildi (t) ∈ [−1, 1] so that sild(t)
provides, for each channel, a normalized estimation
of the ILD independent of the input energy. An ILD
signal computed from this model and obtained from
a binaural recording is presented in Fig. 2.

2.2. Sensorimotor sound localization

The sensorimotor theory [12, 13] considers perception
as an interaction between an agent, either a biological
or a robotic one, and its environment. In this context
it is suggested that the agent analyzes the sensory
consequences of its own movements and learns senso-
rimotor laws that give raise to spatial perception. This
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Figure 2. An ILD pattern sild(t) obtained from a 5 s bin-
aural recording. The sound source is a set of keys moving
from left to right of the robot at constant distance and
elevation. We use 80 cochlear channels from 100 Hz to
8 kHz (from channel 80 to channel 1 respectively), with
τ = 0.1 and T = 0.1 s. The threshold τ suppresses the
low intensity part of the signal (channels 30-80), the ILD
being computed only in the high intensity band (channels
1-30). After integration sild(t) is sampled at the frequency
2/T = 20 Hz.

sensorimotor interaction is modeled as an interaction
between the environmental space E , the sensory space
S, and motor space M of the agent [4]. In the con-
text of sound localization, a given environmental state
e ∈ E describes the acoustic properties of the environ-
ment as well as the spatial and spectral properties of
the source. The state of the agent is described by its
motor state m ∈M and its sensory state s ∈ S. This
sensory state s is determined by both the environ-
ment and motor states e and m through the so-called
sensorimotor law Φ(.) defined along [4]:

s = Φ(m, e). (4)

This sensorimotor law, as well as the environment
space are not directly accessible to the agent which
has to infer this information from an analysis of its
sensorimotor experience. Within this context, source
localization can be defined as the estimation of a
movement the agent can do to orient itself toward
that source [12]. Localization is done in the motor
space of the agent and does not rely on any assump-
tion on the physical space. Given a motor space M
and an environment state e ∈ E , we thus call sound
source localization the estimation of the motor state
m̃ such as [8]:

m̃ = argmin
m∈M

|Φ(m, e)− Φ(mref , eref )|, (5)

where |.| denotes a given distance metric. The config-
uration (mref , eref ) represents a source localized in
front of the listener with the head in rest position and
corresponds to the most obvious case of localization.
The sensory state sref = Φ(mref , eref ) is initially un-
known and is approximated via evoked behavior ex-
periences (Sec. 2.3). This sensorimotor definition of

localization implies a distance minimization and thus
a metric on S. The mathematical nature of this sen-
sory space is a priori unknown but we assume that S
lies on a differential manifold [4]. Under this hypoth-
esis S is locally flat and the Euclidian metric can be
used for local distance computation.

In the rest of this article we consider a mobile
binaural listener perceiving a single stationary sound
source. The source emits a white noise at variable az-
imuth, constant elevation and constant distance in a
noise-free anechoic room. The only environmental pa-
rameter is thus the azimuthal angle of the source and
we have E = [−π/2, π/2]. The sensory space S refers
to the ILD space. We use the ILD vectors sILD as
described in section 2.1 and thus have S = [−1, 1]c

with c cochlear channels. Finally the motor spaceM
describes all the motor commands the robot can gen-
erate. Here the BinnoBot is limited to neck rotations
in the azimuthal axis and we haveM = [−π/2, π/2].

2.3. Auditory evoked behavior

The auditory evoked behavior is a hard-wired reflex
allowing the robot to orient its head toward the az-
imuthal direction of a sound source corresponding to
an environment state e ∈ E . From a given initial mo-
tor state minit ∈ M and the sensory state sinit =
Φ(minit, e) the reflex minimizes the ILD summed over
frequency channels through azimuthal rotation of the
neck. Calling sildsum(t) the summed ILD at instant t,
we have:

sildsum(t) =

c∑
i=1

sildi (t). (6)

In order to lateralize the sound source and to initialize
the head motion toward it, the rotation direction k is
initiated to the left if sildsum(t0) > 0 or to the right if
sildsum(t0) < 0, where t0 is the initial time value. The
neck rotation is then done at a constant angular speed
and terminates when a change in the sign of sildsum(t) is
detected, i.e. when the head is aligned with the sound
source.

After completion of the evoked behavior, the final
motor and sensory states mend and send are obtained
and the localization estimation m̃ is given as the total
angle of rotation done during the movement:

m̃ = mend −minit. (7)

Moreover the final sensory state send gives
an approximation of the reference sensory
state as introduced in Eq. 5 and we have
send = Φ(mend, e) ≈ sref = Φ(mref , eref ). Finally
the pair composed by the initial sensory state sinit
and the motor estimation m̃, obtained after the head
has moved, summarizes the sensorimotor experience
of the agent when confronted to the environment
e ∈ E .
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2.4. Localization on the auditorimotor map

Let the auditory evoked behavior be executed by the
robot on n environment states ei ∈ E , with i ∈ [1, n],
each one associated with a source at random azimuth.
The auditorimotor map A is defined as the set of the
pairs of initial sensory states and final motor states
obtained for each of the n behavior occurrences. We
thus have A = {(si,mi)|i ∈ [1, n]}. An online proce-
dure for the learning of the auditorimotor map has
been proposed [8]. The present paper focuses on an
offline version of the algorithm, where A is given a
priori to the robot.

Once built, this auditorimotor map can be used by
the robot to infer a motor command that would make
it face a source of unknown azimuth. Let s ∈ S be a
sensory state associated with such a source. The esti-
mation of the motor state m̃ associated with s is given
by interpolation in A. More precisely, letKS(s) be the
k-nearest neighbors of s in A and KM(s) their related
motor states. m̃ is given from KS(s) and KM(s) by
inverse distance weighting interpolation, so that:

m̃ =

k∑
i=1

wimi∑k
j=1 wj

, with wi =
1

|s− si|
, (8)

where si ∈ KS(s) and mi ∈ KM(s). The inverse dis-
tance weighting ensures that the closest neighbors of
s in KS(s) contribute more importantly to the esti-
mation of m̃.

3. Results

This section presents two experimental results. First
we offer an experimental validation of the orientation
behavior and the reference sensory state estimation.
We then evaluate the localization performance ob-
tained by interpolation in the auditorimotor map.

3.1. Protocol

This experiment being carried in an anechoic cham-
ber, we assume that for a given learning step, the
only relevant free parameter that can impact the ILD
is the head’s relative orientation with respect to the
sound source. Randomizing the head’s initial azimuth
at each step is then equivalent to randomizing the
source position. For practical reasons, we chose to im-
plement the former. A single learning step will then
look like this:
1. Randomize head position
2. Play white noise using the sound source
3. Save initial sensory and motor states
4. Orient the head towards the source using the audi-

tory evoked behavior
5. Save final sensory and motor states

A sufficient quantity of sensorimotor states will be
learned this way, constituting a database usable of-
fline. This database will be split into a learning set
and a test set in order to evaluate the efficacy of mo-
tor command inference. For each initial test sensa-
tion, the k nearest initial sensations in the learning
set will be retrieved and an associated interpolated
motor command will be computed.

In the following experiments, we use c = 30 fre-
quency channels from fmin = 2 kHz to fmax = 6 kHz,
for which ILD is relevant in humans [9]. In order to
suppress motor noise, the transduction threshold is set
to τ = 10−7. The integration duration for ILD compu-
tation is set to T = 10 ms. Finally the interpolation in
the sensorimotor space is done with a neighborhood
order k = 12.

3.2. Auditory evoked behavior

The auditory evoked behavior has been tested thor-
oughly and the experimental parameters relevant to
the optimization of its precision have been brought
out. The reflex behavior precision showed indeed de-
pendency on several tweakable parameters. Three
main components affect the overall behavior precision:
• The quantity sildsum(t) based upon which the algo-

rithm decides whether to stop the movement, is a
sum of several frequency band contributions. It fol-
lows that the number of filters in the gammatone
banks impacts the reliability of sildsum(t) as a cue:
the fewer filters the less localization information.
We estimated that under our experimental condi-
tions, we needed to have at least 25 gammatone fil-
ters in order for the summed ILD to show the same
profile as the ILD computed on the mere acquired
signal.

• The ILD time integration T used to smooth out
quick variations for robustness concerns, induces a
phase shift in the ILD as a function of time. This
delays the zero-crossing event that triggers the mo-
tor stop command by some duration ∆t, producing
a reflex overshoot. The magnitude of this effect can
be circumscribed by fine-tuning the ILD integra-
tion duration, keeping in mind that there is a trade-
off here between robustness and precision [14].

• The overshoot given in degrees depends directly
on the motor speed. Indeed, for a given ∆t, other
things being equal, a higher motor speed allows the
head to move somewhat more before it is required
to stop. This means the delay can always be com-
pensated by reducing the reflex speed, at the ex-
pense of the global experiment duration.

That said, these parameters could be set in such a
way that the vast majority of the final azimuths do
not overshoot by more than±5◦, still allowing to learn
700 points in the manifold in about one hour. After a
run, we were able to establish statistics on 700 final
azimuths. The mean final azimuth is −1.61 ± 2.77◦.
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Figure 3. Final azimuths histogram obtained from 700
runs of the auditory evoked behavior.

The azimuths distribution underlying the histogram
in Fig. 3 seems bell-shaped.

3.3. Localization on the auditorimotor map

A learning session is composed of 700 initial and final
sensorimotor states. This data set is split into two
distinct sets. A learning set containing 600 samples is
used to build the auditorimotor manifold. A test set
gathering 100 samples is devoted to assess the benefits
of the interpolation method when confronted to states
that have not been learned.

3.3.1. Manifold learning
The sole free parameter in the experiment that can
affect the ILD, is the orientation of the head rela-
tive to the source. The sensation manifold is then ex-
pected to be intrinsically one dimensional. In order
to verify this statement, a dimensionality reduction
operation is carried out on the manifold using a Prin-
cipal Component Analysis (PCA), keeping the first
two components accounting for the most data vari-
ance. Sensations projected to the plane this way (see
Fig. 4) show a thin curvilinear profile, confirming the
monodimensional nature of the auditory manifold.

By furthermore representing the movement associ-
ated to each initial sensation using a color scale, we
get a grasp of the smooth nature of this manifold. Two
near sensations correspond to two near motor com-
mands. The final sensations can now be projected to
the same plane thanks to the PCA coefficients com-
puted before. Doing this we obtain the blue cluster in
Fig. 4. This cluster is dense and localized on the man-
ifold, identifying clearly enough the reference sensory
state.

3.3.2. Inferring motor commands
For each sample in the test set, we were able to in-
fer a motor command that would make the robot face
the source. In order to visually assess the effectiveness
of the inference algorithm, the robotic head was first

Figure 4. Auditorimotor manifold learned by BinnoBot
on 600 sensorimotor states. The high dimensional audi-
tory manifold has been projected in the plane by means
of a PCA. Each initial sensory state sinit is associated
to the rotational movement (in degrees) necessary to face
the sound source (color scale). The deep blue cluster cor-
responds to projected final sensory states send.

Figure 5. Final azimuths histogram using the interpola-
tion method after the learning process on 600 sensorimo-
tor states.

oriented according to the test initial position, then ex-
ecuted the inferred motor command. The head is able
to return to the reference position each time, facing
the source. The set of final azimuthal positions is ob-
tained and subjected to the same statistical analysis
we did in subsection 3.2.

The mean final azimuth is −1.21 ± 1.77◦. The
azimuth distribution underlying the histogram of
Fig. 5 seems indeed much sharper than the one from
Fig. 3. This lower standard deviation indicates a sig-
nificant precision enhancement. Furthermore, motor
commands could be executed at full speed, as speed
is not a precision limiting factor anymore.
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4. Discussion

In essence, we learned from our results that a robot
devoted to a sound localization task can take advan-
tage of previous auditorimotor experience, so as to
build an internal representation of its auditory space,
during a manifold learning phase. This representa-
tion can then be used to localize a sound source,
showing improved overall performance as compared
to the reflex behavior. Indeed, the orientation move-
ment is carried more precisely when arising from mo-
tor command inference based on previous learning.
Motor command inference also presents the advan-
tage of delivering a localization result after a constant
short amount of time, enabling the robot to work at
full speed, showing great reactivity. During the learn-
ing phase, there is a prerequisite for the source to be
stationary and immobile while the orientation move-
ment is carried. On the contrary, after the learning
process, a brief sound can trigger a quick orientation
behavior, as a unique sound frame is needed to infer
a motor command. These acquired properties endow
the robotic platform with the ability to react quickly
and precisely to external auditory stimuli, rendering
it suitable for sound source localization and tracking
duties.

The sound source used for the learning phase was
emitting continuous white noise, which made the
whole inference process require that precise spectral
category in order to work correctly. Further efforts
are intended to limit the adverse effects of spectral
content, by playing more elaborate sounds during the
learning process. Experiments also need to be carried
out in a non anechoic environment so as to confront
the learning model to more diverse and realistic sce-
narios. An online version of the algorithm is currently
showing good results in simulation and an experimen-
tal validation is scheduled soon.

5. Conclusion

Our results show that in a sufficiently simple envi-
ronment, a naive agent is able to learn a representa-
tion of its auditory space, and to use it afterwards to
localize a sound source in its own azimuthal motor
space. No environment and robot model were needed
here, the agent only had access to sensorimotor cues
to construct its sensorimotor map. To some extent,
the agent was able to learn auditory perception and
gained additional performance by doing so. The reflex
behavior used during the learning process was outper-
formed by the motor command inference algorithm in
several ways. Inferring motor commands using past
sensorimotor experience allows a fast and precise re-
sponse to a stimulus.
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