Linear Disentanglement through
Action Group Learning

Barthélémy Dang-Nhu, Louis Annabi, Sylvain Argentieri
Sorbonne Université, CNRS, Institut des Systemes Intelligents et de Robotique, ISIR, F-75005 Paris, France
{dangnhu,annabi,argentieri}@isir.upmc.fr

1 Introduction

A causal world model that allows an agent to learn the under-
lying structure of the environment, rather than just surface-
level correlations, is especially important in lifelong learning,
where the agent must adapt to out-of-distribution changes.
By modeling why things happen (e.g. by capturing causal
structures) rather than just what happens (i.e. not relying
only on prediction), a causal model enables the agent to
make reliable predictions and to adapt quickly to new situa-
tions with minimal data. This leads to more robust, transfer-
able learning across evolving tasks and environments [1, 16].
Building a causal world model in an unsupervised setting
often requires, in the first place, that the data’s distinct gener-
ative factors be already identified [19], which can be achieved
by acquiring a disentangled representation of the environ-
ment, making possible to identify meaningful features that
correspond to causal variables. Without this structured rep-
resentation, inferring causal relations becomes unreliable,
as the agent cannot isolate the independent mechanisms
generating observations.

Numerous methods have been proposed in recent years to
obtain disentangled representations, most of which are based
on VAEs [9, 11] or GANSs [5]. However, it has been shown
that obtaining the correct disentangled representation in
a purely unsupervised manner is impossible without prior
knowledge [12]. In this work, we thus only focus on the dis-
entanglement representation using self-supervised learning
from sensorimotor interactions.

2 Related Work

Higgins et al. [8] propose a formal definition of disentangle-
ment called Linear Symmetry-Based Disentanglement (LSBD),
based on group theory. Let X denote the set of possible
observations of the environment, an encoder is a function
h: X — Z that projects an observation into a latent space.
Additionally, we assume the existence of a set of actions
G, which satisfies the axioms of a group: the existence of
an identity element, closure under composition, and the ex-
istence of inverses. Furthermore, this group is assumed to
decompose into direct factors G; i.e. G = Gy X - - - X Gg. This
group structure defines an action function -x : G X X — X,
which maps each action g € G and world state x € X to a
new world state x” € X after the application of g.
Definition 1. h is said to be disentangled if [8]:

1. There exists an action function -z : GX Z — Z

2. There is equivariance: Vg € G,x € X, ¢ -z h(x) =
h(g -x x)

3. There exists a decomposition Z = Z; & ... @ Zx such
that Z; is only affected by G;

Moreover, the representation is said to be linearly disentan-
gled if -7 is linear, i.e., if there exists a group representation
p : G — GL(Z) such that g -z z = p(g)z. Several methods
have been developed to learn such a disentangled repre-
sentation [3, 15, 18]. However, they all rely on strong prior
knowledge about the direct factors of actions (e.g., direct
factors decomposition [3], cyclic groups [15]).

3 Contributions

We highlight theoretical and empirical limitations of existing
algorithms. Based on these, we extend the LSBD framework
by explicitly introducing assumptions that are required to
ensure that disentanglement is consistently achievable. We
then use these hypothesis to propose an algorithm that learns
the group decomposition G = G; X - -+ X Gk from raw ac-
tions. Additionally, we propose another algorithm that uses
this decomposition to learn a disentanglement representa-
tion. Using these two methods combined, we propose the
first algorithm for linear disentanglement that is completely
agnostic to the action group.

4 Method

Our method is decomposed in three steps:

1. We learn a non-disentangled representation i.e. a rep-
resentation satisfying only points 1 and 2 of Defini-
tion 1 solely for the purpose of learning an invective
morphism p : G — GL(Z).

2. From this representation we learn the decomposition
G=G; X---XGg

3. Thanks to this decomposition we learn disentangled
representation

4.1 (Step 1) Learn a non-disentangled representation

The encoder h : X — Z is learned with an adapted version of
a Variational Auto-Encoder [10] using aloss £ = Lrec + Lacr-
Lrec denotes the classical VAE reconstruction loss, which is
completed with £ 47 which ensures that h(x’") = p(g)h(x)
(as stated in point 2 from Definition 1) with p(g) € R¥? In
practice, d? parameters are learned for each action g.
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Figure 1. Six disentangled metrics computed for 4 different approaches. (Left) ColoredFlatland dataset. (Right) COIL dataset.
Our approach exhibits almost systematically better disentangled metrics.

4.2 (Step 2) Learn the group decomposition

We argue that it is impossible to guarantee that the correct
disentanglement is learned without additional assumptions.
To address this issue, we introduce the following additional
assumptions:

1. Only a subset of whole group action G C G is available
for the agent;

2. The available actions are disentangled: each action in
G belongs to a unique direct factor G;

3. For each available action pair of a same direct factor
G;, there is another action from one to another.

We show that previous methods [3, 15, 18] make similar
implicit hypotheses for the first two assumptions. Thanks to
three hypotheses, we derive a criterion to determine whether
two actions belong to the same direct factor. This criterion
relies on the representation learned in the previous part.

4.3 (Step 3) Learn a disentangled representation

Learning a disentangled representation with respect to the
LSBD framework is equivalent to learning a representation
where all p(g) are the identity matrix except for one block
on the diagonal. Additionally we want actions of the same
direct factor to learn the same specific block of their ma-
trix, thus justifying Step 2 of the approach. To that end, we
add a learnable mask to build matrices with such properties.
Thanks to a continuous relaxation on those masks, this dis-
entangled learning only needs one additional loss compared
to the non-disentangled learning of Step 1.

5 Results

We first show that our group decomposition in Step 2 works
perfectly well on different environments. Then we compare
our Step 3 to state of the art algorithms for linear disentan-
glement: LSBD-VAE [18] and Quessard [15]; we also added
B-VAE [7] for a purely unsupervised baseline. For that pur-
pose, we used two environments:

e ColoredFlatland, an extension of Flatland [2] gen-
erating a disk moving along the x/y axes of a black
background, but enriched with colors;

e COIL [13] where different objects can be rotated; per-
mutations have been added to the original data.

As shown in Figure 1, our 3 steps approach outperforms
these previous works in all of the disentanglement metrics
proposed in [4, 6,7, 11, 14, 17]. But one question remains: for
a given learned model, how to evaluate the disentanglement
without the ground-truth features ? We experimentally show
that our method guarantees that low training loss implies
necessarily maximised disentanglement metrics.

6 Conclusion and future work

In conclusion, our method outperforms existing approaches
but has several limitations. The first one lies in the use of
multiple successive training phases, which incurs additional
computational cost as Step 3 is learned from scratch because
we didn’t find so far a way to re-use the representation ob-
tained in Step 1. The second limitation is that Step 2 involves
a hard-clustering of actions in direct factors, which can lead
to poor learning performances in Step 3 if the discovered
decomposition is incorrect.

Here, we have now disentangled the different features of
the representation, the next step is to uncover the causal
structure between the latent factors. This involves identify-
ing which variables influence others and how interventions
affect outcomes. With disentangled features serving as candi-
date causal variables, the agent can now explore and analyze
their relationships —through observational data, interven-
tions, or counterfactual reasoning— to build a structured
causal world model that supports robust generalization and
reasoning across tasks.
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