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Abstract

Hearing is a key modality on which several perceptual human processes rely on. Together with
vision, these two modalities offer a 360 degrees wide, highly sensitive, quickly adaptive, and in-
credibly precise system of perception of the environment. In an exploratory robotics context, the
concept of audiovisual objects is very relevant for a robot since it enables it to better understand
its environment, and also to interact with it. However, how to face the cases when an object is
out of sight, or when it does not emits sound, that is, the cases of missing information? The pro-
posed Multimodal Fusion and Inference (MFI) system takes advantages of having (i) multimodal
information and (ii) the ability to move in the environment, to implement a low-level attentional
algorithm that enables a mobile robot to understand its environment in terms of audiovisual ob-
jects. In the case of a missing modality, the proposed algorithm is able to infer the missing data
thus providing to the robot full information to higher cognitive stages. The MFI system is based
on an online and unsupervised learning algorithm using a modified self-organizing map. Fur-
thermore, the MFI exploits the ability to turn the robot head towards objects, thus benefiting from
active perception to reinforce autonomously what the system is actually learning. Results exhibits
promising performances in closed-loop scenarios involving sound and image classifiers.
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1 Introduction
The ability of a mobile robot to autonomously travel around an unknown environment is most
often called exploration. It has to extract by itself some information originating from the envi-
ronment through the use of its own sensors. The work presented in this article is focused on
a specific case of exploration called Search & Rescue scenario (S&R). In such cases, assess-
ment of the situation is needed to successfully launch search and rescue missions [3]. The
current work is rooted in the TWO!EARS project [11], whose goal is to develop an intelligent
and active computational model of auditory perception in a multimodal context. The final sys-
tem is expected to assign meaning to acoustic events. The overall model will be implemented
on a robotic platform able to actively explore environments, orientate itself in it, and move its
sensors in a humanoid manner. The system embedded in this robot will be evaluated in a
search & rescue mission. Let’s precise that the current work will be limited to the simulation
of the TWO!EARS components, since some components are not available yet. In S&R situa-
tions, event significance (or meaning) becomes highly relevant. Indeed, all events occurring
in the environment are not equal in terms of importance to the mission to be accomplished by
the robot. This problem has already been addressed through object learning [7], object-based
attention [10] (see [4] for a survey), or motivation for exploration [1]. However, most of these
contributions don’t address the question of relevance of the object to be explored. In other
words: everything in the scene is of equal importance. Another important point is the sensory
modality considered. In the references cited above, most of the objects are exclusively visual,
whereas they are in the reality mainly multimodal (and often particularly audio-visual), such as
persons talking or yelling, fire crackling. . . Classical topographical maps of environments aim
at representing physical objects like obstacles, rooms, corridors, danger zones. . . . Here, the
goal is to build a topographical map incorporating what lies in the environment that is being
explored in terms of objects or events populating it. The learning of such a map is done in
an unsupervised way by mean of a multi-modal self-organizing map (M-SOM) that uses an
online algorithm. By doing that, the system can autonomously learn and adapt quickly when
facing new situations in unknown environments. The authors have already partially adressed
the importance of an autonomous, unsupervised, audio-visual object learning in previous pa-
pers [5, 12] through the development of the Dynamic Weighting model (DW) based on the
notion of Congruence of audiovisual events. The Multimodal Fusion and Inference model (MFI)
presented here is a part of a more global Head Turning Modulation (HTM) model which in-
cludes both the MFI and the DW models. HTM aims at modulating head movements caused
by the apparition of events during exploration of unknown environments. The main objective of
the whole system is to learn the cases when triggering a head movement is relevant for the
robot’s exploration task. The paper is organized as follows. Important definitions are outlined
in a first section, followed by the formalization of the proposed MFI system in a second sec-
tion. Its effectiveness in two different conditions is then assessed in a last section. Finally, a
conclusion ends the paper.
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2 Architecture of the Multimodal Fusion & Inference model
The proposed active multimodal inference system is rooted in the TWO!EARS framework [11].
The framework will be implemented and evaluated on a mobile robot system that can interac-
tively explore its environment based on audio-visual information. As stated above, since some
components required to test the proposed model are not yet available in the TWO!EARS soft-
ware, the evaluation of the model has been made on simulations. This also enabled us to
perform more complex tests. In a first subsection, the generic TWO!EARS framework will be
quickly introduced in order to allow the reader to capture the main objective of the proposed
inference system with respect to its implementation within a larger framework. This section
ends with a description of the proposed Multimodal Fusion and Inference system.

2.1 The TWO!EARS architecture

The TWO!EARS architecture relies on (traditional) bottom-up signal processing and top-down
cognitive processes. Based on the signal captured by two microphones, a binaural auditory
frontend [9] extracts auditory features. Among them, one can cite rate maps, interaural dif-
ferences, interaural coherence, onsets/offsets, etc. These bottom-up processing stages are
implemented as a collection of processor modules. The subsequent cues constitute the inputs
of a collection of knowledge sources (KS), formulating hypotheses at different level of abstrac-
tion such as identity knowledge sources – dedicated to the identification of sound classes –,
or localization knowledge sources – estimating the source event geometrical position w.r.t. the
binaural sensor – etc. In this architecture, the proposed MFI system will constitute an addi-
tional KS of the architecture since it will make hypotheses about objects/events to focus on.
Importantly, all these KS communicate which each others by reading and writing data on a
globally-accessible structure (called blackboard [2,6]).

2.2 Inputs of the MFI

The MFI model relies on the outputs of three kinds of KS: (i) a Localization KS, (ii) an Auditory
Identification KS, and (iii) a Visual Identification KS. The output of the KS are simulated so as
to mimick the behavior of the TWO!EARS one. Thus, the Auditory Identification KS will output a
vector whose dimension is equal to the number of auditory classification experts available:

Pa[n] = (pa
1[n], . . . , pa

Na
[n])T , (1)

In an identical fashion, the Visual Identification KS will output a vector whose dimension is
equal to the number of visual classification experts available:

Pv[n] = (pv
1[n], . . . , pv

Nv
[n])T , (2)

In equations (1) and (2), pa/v
i represents the probability of the current audio/video frame to

belong the the ith audio/visual category. Finally, the Localization KS outputs a vector whose
components are the probabilities of a sound source to be located to a certain angle within
a 360◦-wide range. These three outputs are then collected inside a time varying vector V[n]
defined as

V[n] = (P[n]T ,θ [n])T , with P[n] = (Pa[n]T ,Pv[n]T )T . (3)
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In all the following, the vector P[n] will be referred as the nth audio-visual frame available to the
MFI.

2.3 Audio-visual category C

We define the audio-visual category C of an audio-visual frame as being the concatenation of
the ground true classification of the current audio and visual data. Let’s consider, for instance,
Na = 3 auditory identification KS modeling the sound categories: C a

1 = {speech}, C a
2 = {knock}

and C a
3 = {alert}. In the same vein, let’s imagine Nv = 2 visual identification KS modeling the

visual categories C v
1 = {door} and C v

2 = {face}. Then, if a person is speaking in front of the
robot, the audio-visual category Ĉ output by the MFI is expected to match the real category
C = {C a

1 ,C
v
2 }. More, the MFI output is expected to match the real category even if (i) the audio

and/or visual KS produce wrong classification results, or (ii) audio or visual data are missing.

2.4 Internal structure

Fig. 1 exhibits the MFI internal structure. Two main points have to be emphasized:

• the categorization of the audio-visual frame is computed by a Multimodal Self-Organizing
Map (M-SOM);

• this M-SOM is directly connected to a module responsible for triggering motor orders so
as to confirm the missing data inference (active data inference).

Each subsystem will be formalized in the following subsections. Again, the reader has to keep
in mind that the MFI performs active data inference on the basis on the classifier outputs, and
not on the audio or visual cues extracted from the raw signals. Thus, the MFI can be under-
stood as a classifier fusion system that estimates the audio-visual category Ĉ [n] of a perceived
object. The exploitation of this estimated audio-visual category is out of the scope of the paper.

2.5 M-SOM

The M-SOM is directly based on a traditional SOM which is an artificial neural network which
provides a discretized representation of an input space in an unsupervised way [8]. In other
words, a classical SOM provides a way to visualize high-dimensional data through a low-
dimension projection preserving the input data topology. In practice, a two-dimensional map
is often used to represent the input data through a 2D arrangement of nodes ri j, each of them
being associated with (i) a weight vector wi j of the same dimension as the input data vectors,
(ii) a position (i, j) in the map space. Learning such a map traditionally requires two steps:

1. detection of the Best Matching Unit (BMU), i.e. the node rBMU[t] whose associated weight
vector is the most similar to the input vector being P[n] learned at iteration t, i.e.

rBMU[t] = rIJ[t], with (I,J) = argmin
(i, j)
{‖P[n]−wi j[t]‖} (4)

where ‖.‖ represents the Euclidean distance, and (i, j) ∈ [1, . . . ,Na]× [1, . . . ,Nv] ;

4



Multimodal  
Self-Organizing Map 

Audiovisual category

Motor order 
generation

Motor 
feedback

V[n] Pa[n] Pv[n] ✓[n]

pv
1[n] . . . pv

Nv
[n]pa

1 [n] . . . pa
Na

[n]

bC [n]

qm[n]

Audio 
classifiers

Visual  
classifiers Localization

M
ul

tim
od

al
 F

us
io

n 
&

 In
fe

re
nc

e 
K

S

… …

Figure 1: Global architecture of the Multi-
modal Fusion and Inference model.

pv
1[n] . . . pv

Nv
[n]pa

1 [n] . . . pa
Na

[n]

Audio 
classifiers

Visual  
classifiers

ri j

wa
i j wv

i j

. . . . . .

P[n]

ri j ra
i j rv

i j
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2. weight adaptation, including a neighborhood function hi j which allows the propagation of
input topology around the BMU, i.e.

wi j[t +1] = wi j[t]+α[t] hi j[t] ‖P[n]−wi j[t]‖, (5)

with h being defined as a Gaussian neighborhood function, with

hi j[t] = exp
(
−
‖rBMU[t]− ri j‖2

2σ [t]2

)
. (6)

Once the learning phase is over, the SOM can be used for clusterization. Given an input
vector P[n], the BMU is first localized in the map by using Eq. (4). Its corresponding weight
vector wBMU =wIJ then carries information about both audio and visual modalities since wBMU =
(wa

BMU
T ,wv

BMU
T )T , with wa

BMU = (wa
1, . . . ,w

a
Na
)T and wv

BMU = (wv
1, . . . ,w

v
Nv
)T . Then, the audio-visual

category Ĉ [n] of the input P[n] is estimated along

Ĉ [n] = (Ĉ a
A [n], Ĉ

v
V [n]), with

A = argmax
k

wa
k and V = argmax

l
wv

l .
(7)

While the SOM has proven to be a very efficient way to compact and represent high-dimensional
data, this tool is not able to cope with missing data. Unlike the traditional SOM, the proposed
Multimodal Self-Organizing Map (M-SOM) uses two weight vectors wa

i j and wv
i j per node ri j.

Each weight vector is thus dedicated to a given modality. The two maps are then fused to-
gether under the constraint ra

i j = rv
i j = ri j.
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2.5.1 If all modalities are available

In such a case, the system will be able to learn the relationship between the audio and visual
components, but also to possibly correct the wrong classification results from the audio or
visual KS.

Learning step An audio-visual BMU rav
BMU is defined along

rav
BMU = rIJ[t], where
(I,J) = argmin

i, j

(
‖Pa[n]−wa

i j‖‖Pv[n]−wv
i j‖
)
, (8)

Once this multimodal BMU is found, the rest of the learning algorithm remains the same and
follows Eq. (5) and (6).

Category estimation Audiovisual categories can still be estimated thanks to Eq. (7), but by
using the components wa

i and wv
i of the weight vector of the audio-visual BMU wav

BMU found with
Eq. (8). This will result in an estimated category Ĉ (all)[n] (where (all) indicates that both audio
and visual data was available). Importantly, even if some classification errors occur the M-SOM
should be able to correct those errors. This will be illustrated in §3.

2.5.2 If one modality is missing

In such a case, there is no learning phase. Instead, the current state of the M-SOM is used
to infer the missing data. Let’s consider, as an example, the case where visual data is not
available:

1. audition alone is used to derive the audio BMU ra
BMU in the audio map, whose associate

weight wa
BMU can be used to decide the audio category Ĉ a

A [n], with A = argmaxk wa
k ;

2. the visual BMU is directly derived from the audio one with rv
BMU = ra

BMU. This is the step
where the link between audio and visual data built during the learning step is exploited ;

3. then, the weight wv
BMU associated with the visual BMU rv

BMU can now be used to decide
the visual category Ĉ v

V [n], with V = argmaxl wv
l .

At the end, the system is then able to provide an estimated audio-visual category Ĉ (miss)[n]
= (Ĉ a

A [n], Ĉ
v

V [n]) (where (miss) indicates that there was a missing modality), even if no visual
data is available. A reciprocal approach can be used when audio data is missing.

2.6 Motor order generation

As outlined above, no learning phase occur if a modality is missing while inference is made
to estimate the category of current object. Benefiting from having a mobile robot, a motor
action could allow to actively catch this missing data. In this paper, the active behavior will be
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restricted to head movements only, while not being conceptually limited to. Let’s consider the
Kronecker delta δ (k)

i j [n] defined along

δ (k)
i j [n] =

{
1 if Ĉ (k)[n] = (C a

i [n],C
v
j [n]),

0 else,
(9)

where k = {all,miss} denoting if the the category has been obtained without or with missing
data. We can then define the inference ratio qi j[n] of the audio-visual category (C a

i ,C
v
j ) with

qi j[n] =
∑

n
k=1 δ (miss)

i j [k−1]δ (all)
i j [k]

∑
n
k=1 δ (miss)

i j [k]
. (10)

qi j captures the ratio between the number of confirmed inferences and the number of time an
inference has been made through the M-SOM for a given audio-visual category. On this basis,
a head motor command θm[n] is generated according to

θm[n] =
{

θ [n] if Khead ≤ qi j[n]< 1,
θm[n−1] else.

(11)

The angle θ [n], given by the Localization KS, is exploited to turn the head towards the esti-
mated sound position at time n. Khead ∈ [0,1] represents in Eq. (11) a threshold allowing to
tune the active behavior. A low threshold will make the system quickly trust in the inferences
(and thus will inhibit the head movements), while a high threshold will trigger a lot of head
movements so as to verify often if the inferred audio-visual category is correct.

3 Simulations and Results
The Multimodal Fusion & Inference will be evaluated along a simulation of 13 audio classifiers
and 9 visual classifiers for a total of 14 possible audiovisual pairs (since some audio labels can
be associated to two or more visual labels). This will enable the statistical evaluation of the
MFI performances, in terms of category estimation, data inference/correction, but also in terms
of head movement modulation

3.1 M-SOM convergence and classification rate

A first evaluation of the M-SOM performances, in terms of frame categorization, consists in
comparing its category estimation output Ĉ to a decision taken directly at the outputs of the
audio and visual classifiers C , with C = (C

a
Ã,C

v
Ṽ ) where Ã = argmaxk pa

k and Ṽ = argmaxl pv
l .

Fig. 3 shows the results of a 5000 steps simulation of 125 audiovisual objects. The black and
gray curves exhibit the mean good frame categorization rate for the proposed M-SOM and the
decision at the KS outputs, respectively. The M-SOM systematically outperforms the naive
decision on the classifiers a priori probabilities by 7.4% during the first 500 steps, to 15.8% on
the last 500 steps. This demonstrates the efficiency of the audio-visual fusion performed by
the proposed M-SOM. Fig. 3 also represents the generated objects as rectangular boxes. The
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Figure 3: 5000 steps simulation of 125 audiovisual objects. Mean good frame categorization
rate of the MFI (black), and at the KS output (grey)

color of these boxes indicates whether a motor command has been triggered to confirm the
inference by the M-SOM (gray and dark gray boxes) or not (white boxes). It appears that head
movements are mainly triggered at the beginning of the simulation (few white boxes), while
being less necessary later (more white boxes). This dynamic follows directly the progressive
learning of the MFI together with the growing confidence the system has in its inferences.

3.2 Head movement modulation

In order to quantitatively observe how the head movements can be modulated, the MFI system
is compared with a naive robot that would turn its head every time a new object appears in
the environment. Fig. 4 shows the result of this comparison by plotting the number of time the
MFI has produced a head movement towards a source (red line), versus the naive robot (black
line). During the whole experiment, 125 objects have been observed by the simulated robot,
thus triggering 125 head movements by the naive robot, against only 89 for the proposed MFI
system.

MFI robot

Naive robot

Sources

Robot

Figure 4: Number of head movements triggered by the MFI (red line) and by a naive robot
(black line)
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4 Conclusion
This paper has presented an original Multimodal Fusion and Inference system, based on an
unsupervised real-time learning algorithm that works without any a priori knowledge about the
environment. It enables an exploratory robot (i) to infer missing information on the sole basis
of observation, and (ii) to drive its attention by inhibiting some spontaneous head movements.
Ongoing work is now focused on the integration of the system into a real robot and on experi-
ments in realistic conditions.
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