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Abstract— This paper deals with Automatic Speaker Recog-
nition in a binaural context. Such a problematic, not so widely
dealt with within the speech processing community, can have
potential applications in humanoid robots where speech can
be used as the most natural interface between humans and
robots. The proposed recognition system is based on parallel
Predictive Neural Networks exploiting MFCCs (Mel Frequency
Cepstral Coefficients) to discriminate multiple talkers. Because
of the binaural nature of the system, the sensitivity of the
proposed algorithm to the speaker spatial position during the
learning step is carefully studied. The influence of noise and
reverberation on the recognition rate is also reviewed. Finally,
preliminary experimental results based on the recorded signals
from a binaural dummy head are presented.

I. INTRODUCTION

Physicians often describe auditory perception as the most
important sense in humans, playing a fundamental role in
cultural learning, especially in everything related to language,
and so to human communication. Significant advances in
understanding the biological processes which enable the
handling of acoustic data by humans have been obtained
during the 80s [4], showing that our auditory system is able
to turn a complex acoustic wave into a series of neuronal
activity configurations transmitted to the brain. On the basis
of the two perceived signals, the Robotics Community has
then proposed many auditory functions, trying to mimic our
amazing ability to precisely analyze an auditory scene. Many
works have first focused on the sound source localization
problem, which has ever been widely dealt with by the
Acoustics and Signal Processing Community in the context
of microphone arrays through correlation-based approaches,
beamforming, or high resolution methods [9]. Then, many
works have dealt with higher-level auditory functions, like
speech recognition, enabling a more natural human-robot
interaction.

This paper deals with Automatic Speaker Recognition
(ASkR). Such a topic has been widely studied within the
speech processing community [6],[10],[5]. But this prob-
lematic is most of the time apprehended in a constrained
experimental framework, which leads to specialized systems
devoted to very specific applications. Moreover these systems
are developed nearly exclusively in a monaural context,
with the signal being recorded in ideal acoustic situations.
On the contrary, the robotic context arises new specific
constraints, mainly related to the noisy signals perceived

in a real reverberant environment, including for instance
computer or air conditioning noises. In that sense, classical
monaural techniques are not well suited to high-SNR (Signal
to Noise Ratio) conditions, in realistic and evolutive acoustic
conditions.

Surprisingly, ASkR in a binaural context is not so much
convered in the litterature. Nevertheless, exploiting two co-
herent signals coming from a dummy head sounds like an
efficient way for improving and rubustifying robots recogni-
tion capabilities. In fact, binaural audition is, from about a
decade now, an increasing research area in robotics, where
a lot of works focus on sound source localization, extraction
and speech recognition. Most of these works are rooted in the
Computational Auditory Scene Analysis (CASA) framework,
which aims at providing real-time and efficient analysis of
the acoustic scene surrounding a mobile robot. One can
cite for example [3], where a two-channel-based system
for humanoid robots is designed to reliably localize two
moving sound sources without prior information. In the same
vein, [7] showed that the position of a sound source in
azimuth and elevation can be inferred from two artificial
ears using interaural and spectral cues. Binaural audition
is also exploited in [2] to perform speech detection for a
humanoid robot able to separate and recognize speech signals
even in noisy home environments. This paper exhibits very
promising results, though it still requires manual tuning and
evaluation. A completely different solution is proposed in [8],
where a microphone array with 32 transducers is used to
implement a speech recognition system working in a noisy
housing environment. These two opposite solutions (micro-
phone array vs. binaural audition) set out all the problems
involved in sound recognition with realistic environments. It
also points out the need of adaptive algorithms which are
naturaly well suited to noisy and evolutive conditions.

In this paper, we champion the use of neural networks
for binaural speaker recognition. Such methods, exploiting
Multi-Layer Perceptrons (MLP), constitute a powerful and
flexible analysis tool, as well as an efficient speaker charac-
teristic extractor. In this work, Predictive Neural Networks
(PNN) will be specifically trained to recognize one explicit
talker by extracting classical speech features like MFCCs.
In that sense, the purpose of this study is not to propose
an all new ASkR algorithm, but rather to highlight the
potentiality of binaural ASkR system with respect to estab-



Fig. 1. The three speaker identification steps

lished monaural methods. Interestingly, the manipulation of
binaural signals brings to the fore the inherent sensitivity of
the speaker recognition system to the position of the talker.
As a consequence, a particular attention will be paid to
the constraints related to the sound sources directions, the
influence of the source’s position on the recognition will be
carefully studied.

The paper is organized as follows. First, the ASkR system
is presented. Each step, from the signal coding to the
recognition process is detailed, in a monaural and binaural
context. Next, simulation results follow. The recognition rates
for various SNRs and a case study on the sensitivity of
the method to the speakers positions are depicted. Then,
preliminary experimental results are shown. Real binaural
recordings from a dummy-head are exploited to assess the
efficiency of the method in a real very noisy and highly re-
verberant environment. Finally, a conclusion ends the paper.

II. AUTOMATIC SPEAKER RECOGNITION
SYSTEM

An automatic speaker recognition system is classicaly
based on three successive steps. First, the (monaural) speech
signal is digitally converted through an acquisition card and
eventually pre-preprocessed. Then, the signal is coded by
extracting multiple coefficients representing the speech in-
formation. Finally, a speaker identification algorithm exploits
these coefficients to recognize one or multiple speakers (see
Figure 1). Importantly, the objective of the feature extraction
step is to decrease the volume of the data by deleting the
redundant or useless information contained in the speech
signal. So, this preliminary step condenses the initial signal
into a reduced number of coefficients, which are then used
by the speaker recognition system. Its role is to associate the
perceived signal with one of the known speakers by using
learned data.

In this section, the proposed binaural ASkR system is pre-
sented. First, the speaker database, the binaural simulations
and the speech characteristics exctraction method are de-
picted. Then, the proposed recognition system is introduced.
Finally, criteria for the evaluation of the performances are
discussed.

A. Simulation and coding of the binaural signals

1) Database and simulation of the direction of sounds:
The used speaker database has been generated from radio-
phonic sounds originating from average quality recordings.
The selected sequences relate to long french monologues
with a low-level ambient noise. So, this study is based on
a database of S = 9 male speakers, with a 7-minute long
signal per speaker. Next, the binaural speech signals –i.e. the
perceived left and right signals– are simulated by convoluting
the speaker database signals with impulse responses coming

Fig. 2. Binaural methods by concatenation (BM-C) (top) and by intercor-
relation (BM-I) (bottom)

from a HRTF (Head-Related Transfer Function) database. In
this paper, the KEMAR dummy-head HRTF is used, being
made freely available by the CIPIC Interfaces Laboratory
of the University of California [1]. This HRTF Database
is public, and made of high spatial resolution HRTF mea-
surements for 45 different subjects. The database includes
1250 HRTF-identifications for each subject, recorded at 25
interaural-polar azimuths and 50 interaural-polar elevations
(see [1] for more detailed information). Finally, speech sig-
nals and HRTF database have been acquired with a sampling
frequency fs = 44100Hz.

2) Signal coding: Once being simulated as emitted from
one or multiple directions, the resulting two signals are coded
using two different strategies. In fact, binaural recognition
methods will only differ from monaural ones during this
coding step. More precisely, the question is: “how to combine
the extracted features coming from the two signals ?” As an
answer, two simple binaural methods have been tested in this
paper : the binaural method by concatenation (BM-C) and the
binaural method by intercorrelation (BM-I), see figure 2. It
is important to notice that the second binaural method based
on the intercorrelation, provides a new approach for treating
binaural or two-channel signals. It also has the importance
of allowing to extract the cross-spectral information and
to reduce the noise effect. MFCCs are commonly used as
features in speech and speaker recognition systems. They
can be interpreted as a representation of the short-term power
density of a sound. These coefficients are commonly derived
as follows:
• Compute the Fourier Transform (FFT) X [k] of the

considered time frame.
• Apply to X [k] a set of N = 25 triangular filters regularly

spaced on the mel scale defined by

mel( f ) = 2595log10

(
1+

f
700

)
(1)

• Compute the N output energies S[n] of each filter.
• Compute the kth MFCC coefficient MFCCk value with

MFCCk =
N

∑
n=1

log10(S[n])cos
(kπ(2n−1)

N

)
(2)

The objective of the mel-scale introduced in the MFCC
computation is to approximate the human auditory system
response more closely than the classical linearly-spaced
frequency bands. More precisely, the mel scale is shown to
be a perceptual scale of pitches judged by listeners to be



Fig. 3. Speaker recognition system using predictive neural networks

equal in distance from one to another. As a consequence of
this decomposition, the representation of the speech signal
information is close to the human perception of sounds,
providing a high resolution for low frequencies and a weaker
resolution for high frequencies.

As previoulsy mentioned, in the context of binaural audi-
tion, the two signals can now be coded by MFCC coefficients
with two strategies. On the one hand, the proposed BM-C
method consists in computing independently MFCCs from
the left and right signals, which are then concatenated into
a single vector of 2K elements. In all the following, we
choosed K = 16. On the other hand, we postulate through
the BM-I method the use of K MFCC coefficients of the
intercorrelation Rxy[m] of the right and left signals (see
Figure 2). This intercorrelation that offers a signal reflecting
the similarities between the left and right ears, and rejecting
the noise, is defined by

Rxy[m] =
P−1

∑
p=0

x[p]y[p−m] (3)

where P is the length of the time frame and x[p],y[p] the
right and left signals respectively.

B. Recognition system

1) Predictive neural networks: Once the MFCC features
are extracted, they are exploited as inputs of the recognition
system. The proposed system in this paper relies on Predic-
tive Neural Networks (PNN). It is made of S = 9 parallel
predictive networks, each one of them being dedicated to a
specific speaker of the database. The role of each PNN is to
predict the MFCC coefficients of the currently analyzed time
frame from the two previously coded frames, see Figure 3.

During the learning process, each PNN is trained on the
basis of 3 consecutive vectors of features, each of them being
extracted from a 30ms time frame with 50% ovelapping
snapshots. These three vectors constitute one training exam-
ple; the entire training database is computed on the basis of
the speaker signal to be learned for 90%. The remaining 10%
of the training data are devoted to vectors extracted from the
other speakers for an unlearning process, in order to increase
the specificity of each PNN for one specific speaker.

During the recognition process, a set of 3 MFCC vectors
extracted from a speech signal coming from an unknown

speaker is presented to the S parallel PNNs. Each network
provides a prediction of the third vector on the basis of
the two others. Then, the S reconstruction errors between
the real and the predicted features are computed. Finally,
the unknown speech signal on the current time frame is
associated to the speaker linked to the PNN producing the
minimal reconstruction error

2) Parallel learning: In the previous recognition process,
each PNN is independently learned from the others. As
a consequence, there is no control of the reconstruction
performances related to the different networks during the
learning process. That is to say that one PNN becomes so
efficient that it is able to predict speech features for any
speakers of the database.

In order to equalize the performances of each PNN –i.e.
to assess that one PNN is devoted to only one speaker–, we
propose in the following a parallel training method using a
cross-validation technique, whose objective is to periodically
control the training speed of each network. The suggested
algorithm is described in Algorithm 1. This parallel training

for the current lth cross validation step do
- Computation of the confusion matrix
- Computation of the global recognition rate Rl

global
for i = 1 : S do

- Calculation of the recognition rate for each
network Ri.
- Calculation for each network of a criterion Cl

i :

Cl
i =

∑
S
k=1;k 6=i False Detectionsk

Ri

end
for i = 1 : S do

if Cl−1
i >Cl

i then
Memorization of the new network weights.

end
if Rl

global < Ri then
Stop learning until the next stage of
crossvalidation.

end
end

end
Algorithm 1: Cross-validation step algorithm

method is based upon two criteria: the recognition rate of
the ith network Ri, and a specificity criterion Cl

i for the
ith network in the lth cross-validation step. The value of
the recognition rate Ri is introduced to stop the training
of the ith network if its learning process is faster than the
others, thus equalizing the recognition performances of the
global system. The Cl

i criterion is also exploited to detect
the increase of the specificity of the ith network devoted to
the ith speaker. The minimization of this criterion conducts
to the fall of false detections and increases the global rate of
recognition Rl

global.



C. Criteria for the evaluation of performances

Until now, all the previous descriptions were focused
on a 30ms time-frame scale. As a consequence, the first
immediate way to evaluate the performance of the method is
to check, frame after frame, if the system correctly estimates
the good speaker. However, in real robotics applications,
where longer speech signals are available, different criteria
can be used to produce a more reliable final decision. One
possibility is to allocate the speech signal made of successive
30ms frames to the speaker whose PNN recognizes the
highest number of frames. So, such a method sounds like
a majority vote method. In the following, the interpretation
of the results will especially focus on the recognition rate
on the frames, but also on longer signals lasting 3, 5 and
15 seconds. The recognition rates obtained for the 3s-long
signals are of particular interest when trying to recognize
the speaker on the basis of only one pronounced word. In
the same way, 15s-long signals may provide a more efficient
speaker recognition of an entire phrase. These two specific
scenarios respectively correspond to 2 different interaction
conditions : on the one hand, the recognition capabilities of
the robot must be good enough to guarantee its reactivity
in emergency situations where short words are likely to be
used. On the other hand, longer speech signals relate to more
classical situations during the interaction.

III. RESULTS

We propose in this part to evaluate the performance of the
proposed method in simulation on the basis of the previously
described system. Because of the use of binaural signals,
the position of the speaker enters as a new parameter on
classical speaker recognition systems. It will be of funda-
mental concern. So, in the first part of this section will be
studied the influence of the speaker position with respect
to the recognition rate of the proposed algorithm. Next, the
efficiency of the system will be assessed for different SNR
values in the second subsection.

A. Influence of the speaker position on the recognition rate

In this subsection, the speech signals exploited for the
learning and the cross-validation steps are simulated as
coming from a single direction for each speaker. As a conse-
quence, the ASkR system will become naturally sensitive to
two kinds of competitive information. The first one is related
to the specificities of speech signals which are captured into
a feature extraction setup. This is actually the characteristic
we are interested in. Unfortunately, the binaurality also
introduces directional cues, like IPD/ITD (Interaural Phase
Difference/Interaural Time Difference) or ILD (Interaural
Level Difference), in the process. So, these interaural cues
may conduct the ASkR system to perform a recognition of
the direction of the source in spite of the speaker himself.
More precisely, if the position of the speakers is not the same
in the learning and test phases, the recognition rates might
decrease.

To assess the sensibility of our system with respect to
the speaker positions, we propose in the following to test 3

Fig. 4. Directionnal groups: spk X.Y denotes the Yth speaker of the Xth

group.

TABLE I
CONFUSION MATRIX FOR THE CONCATENATION METHOD BM-C

(ELEMENT: FRAME, NUMBER OF EXAMPLES: 45000 FRAMES).

Classification
Group 1 Group 2 Group 3

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 Spk 9
Spk 1 48.12 25.29 25.20 0.23 0.31 0.02 0.21 0.56 0.06
Spk 2 13.89 59.23 25.23 0.42 0.21 0.08 0.12 0.78 0.03
Spk 3 18.59 25.44 54.30 0.28 0.61 0.06 0.24 0.44 0.04
Spk 4 1.03 1.55 5.98 51.24 31.79 8.24 0.02 0.14 0
Spk 5 3.13 1.82 7.80 20.23 51.18 15.76 0.02 0.06 0
Spk 6 0.96 2.16 6.83 14.55 26.30 49.00 0.11 0.07 0.01
Spk 7 1.13 4.10 10.63 0.04 0.12 0.05 57.39 15.69 10.85
Spk 8 1.20 1.74 5.72 0.01 0.05 0.01 13.22 57.58 20.47
Spk 9 2.56 1.58 8.41 0 0 0.02 15.95 26.73 44.73

directional groups, composed of 3 different speakers each,
for azimuths θ = {−45◦,0◦,45◦} in the median plane and
for elevations ψ = {−45◦,45◦,−45◦} respectively (see Fig-
ure 4). Each of them is simulated thanks to the previoulsy
mentioned CIPIC database, without any noise. The influence
of an additionnal noise in the scene will be studied in the
next subsection. The objective is thus to compare the rate of
confusion within the same or different directional groups,
and to highlight the influence of directional cues on the
identification of the speakers for the two binaural methods
BM-C and BM-I.

The results for the BM-C method are shown in table I.
The important result to be noticed is the significant difference
between the intragroup and intergroup confusion rates. More
precisely, the confusion rate between two speakers from the
same directional group spreads from 8.24%to 31.79%, while
it is generaly less than 1% for two different directional
groups. As a conclusion, this first study demonstrates a strong
learning of the directional cues, supplanting the characteri-
zation of the speaker, when working with the BM-C method.

The results for the BM-I method are shown in table II.
This time, the intragroup and intergroup confusion rates are

TABLE II
CONFUSION MATRIX FOR THE INTERCORRELATION METHOD BM-I

(ELEMENT: FRAME, NUMBER OF EXAMPLES: 45000 FRAMES).

Classification
Group 1 Group 2 Group 3

Spk 1 Spk 2 Spk 3 Spk 4 Spk 5 Spk 6 Spk 7 Spk 8 Spk 9
Spk 1 25.22 17.17 14.10 5.50 6.59 1.80 11.45 9.35 8.80
Spk 2 10.98 31.46 17.02 4.76 6.28 3.52 9.59 8.10 8.28
Spk 3 11.32 16.77 30.53 2.49 8.68 3.80 11.02 7.83 7.56
Spk 4 3.05 8.33 5.21 24.51 14.06 7.23 9.02 14.52 14.06
Spk 5 4.41 5.05 5.31 12.08 23.05 9.40 14.01 14.21 12.49
Spk 6 2.91 4.89 6.05 6.60 13.87 24.08 16.55 10.61 14.44
Spk 7 2.93 6.54 7.13 6.72 15.15 11.10 26.89 10.47 13.07
Spk 8 3.73 6.21 5.67 11.70 13.37 7.55 11.98 26.47 13.33
Spk 9 3.38 5.76 6.49 12.35 10.95 8.41 13.03 13.43 26.19



not so different, being equal respectively to about 10−15%
and 5%. These values show that even if BM-I is not totally
insensitive to the directional information, the learning of
directional cues is now lower. Consequently, it will give
the opportunity to efficiently discriminate speakers regardless
of the direction of emission. The results of the monaural
method depicted on Figure 1 are not shown is this paper.
Neverteless, they exhibit a mean recognition rate of 29% for
a 30ms frame, while its value for the BM-I technique is 25%.
So, despite the sensitivity of the BM-I to the position, this
method gives quite analog performances. On the contrary,
the BM-C produces an imposing 52% recognition rate. But
even if this higher rate might significate that this binaural
method outperforms the monaural one, one has to keep in
mind that the binaural methods also learn the spatial position
of each speaker, this position being identical in the learning
and testing steps.

A comparison between the results of the two binaural
methods exhibits their complementarity. The method of
concatenation, capturing the left and right spectral densities,
conserves the directional information induced by ILD or
spectral notches. So, it seems that this technique could then
be exploited for a localization purpose in spite of speaker
recognition. On the opposite, the method of intercorrelation
seems less sensitive to directional cues and thus allows
efficient recognition of the speaker, independently of any
position modification. This can be explained by the extraction
of MFCC coefficients of the intercorrelation, which does not
code the interaural level difference.

B. Robustness to noise

The objective of this second study is to examine the
influence of the noise on the recognition rates in monaural
and binaural contexts, and to highlight the eventual better ro-
bustness of binaural methods. In noisy conditions, monaural
methods are known to provide poor recognition capabilities.
On the contrary, the exploitation of two redundant signals
may improve the robustness of the ASkR system. For this
purpose, two independent white gaussian noises have been
added to each left and right signal with a variable Signal-to-
Noise Ratio (SNR), thus simulating a diffuse noise field. The
following evaluation is focused on binaural and monaural
signals affected by a SNR of {10dB,0dB,−3dB}. Note
that in ordrer to annihilate the aforementioned directional
cues influence, 14 different positions for each speaker have
been used during the learning step. The obtained results are
depicted in Figure 5. Tests with frames and 5-seconds long
signals have also been made but not presented here. tests
with 3 and 15 seconds are enough to present real interaction
conditions.

Generally, all the methods see a decrease of their per-
formance with a decrease of the SNR. For example, the
frame recognition rate falls from 77.78%, with SNR= 10dB
when working with a 15-second long signal, while it is
only 42.86% with SNR= −3dB in the monaural case. This
illustrates the strong performance deterioration of monaural
techniques under real conditions involving noisy and/or re-

Fig. 5. Evolutions of the recognition scores for various SNR values.

TABLE III
RELATIVE SOURCE POSITIONS CAPTURED BY THE MOTION CAPTURE.

direction azimuth elevation distance
left −52.63◦ 3.26◦ 1.75m
front/left −29.84◦ −0.03◦ 2.40m
front 2.15◦ −4.03◦ 1.54m
front/right 28.33◦ 0.42◦ 2.47m
right 59.67◦ −3.60◦ 2.01m

verberating environments. The BM-I method is relatively ro-
bust to noise: with SNR= 10dB, it outperforms the monaural
method (92.52% vs. 77.78%) for a 15-second long signal. In
a very difficult situation with SNR=−3dB, it still reaches a
recognition score of 68.03%, that is to say 25% higher than in
the monaural context. The binaural method of concatenation
does not provide such a robustness to noisy conditions. The
BM-C performances remain quite identical to the monaural
system, demonstrating that the binaurality itself is not a
sufficient condition to improve the recognition capabilities,
the key features being more in the coding step of the signals.

IV. PRELIMINARY EXPERIMENTAL WORKS

In this section, we present some preliminary experimental
results which have been obtained with real signals originating
from a KU100 dummy head. First, the experimental setup is
depicted. Next, experimental results follow.

A. Speech recording with a dummy-head

The first step in this experiment is to define the speaker
database. In order to establish an effective comparison be-
tween the previous simulations, we exploited the same set of
speaker recordings as before, but limited to only 5 effective
speakers. The signals have been emitted from one high-
level M-Audio AV40 monitoring loudspeaker being mounted
on a 1.7meter-high tripod. Each speaker signal has been
recorded from 5 different locations, each of them being
very precisely measured with a motion capture process. This
system consists in 3 infrared cameras capturing the position
of infrared tags in real time. 4 tags have been placed on the
edges of the loudspeaker to interpolate its 3D position. Next,
the emitted signals are recorded through a KU100 dummy
head from Neumann equipped with 2 balanced microphones.

Its outputs are then simultaneously sampled with a Na-
tional Instruments acqusition card with fs = 100kHz. As
before, the 3D position of the head is extracted from 5 tags by
the motion capture system. As a consequence, the relative po-
sition of the loudspeaker with respect to the head can be com-



Fig. 6. Description of the experimentations. The various noise sources
(computer, air conditioning) positions are approximately represented.

puted. The 5 relative positions are summarized in table III
in a head-related coordinate system. This experimentation
took place in a very noisy and reverberant environment. 3
computers were running and an air conditioning system was
continuously humming during the experiments. The global
organization of the room is shown in Figure 6.

B. Preliminary experimental results

The speaker database used for the training step of the
algorithm is composed of 5 speakers, each of them being
associated to one of the positions mentioned in table III.
During the evaluation step, the positions of the speakers
are interverted. So, this experiment makes possible the
computation of the speaker rate of recognition and the
confusion of the eventually learned direction of emission.
These preliminary results are presented in table IV. The
restricted number of speakers and positions exploited in
this experiment does not strictly allow us to compare the
scores obtained under real recording conditions with those
obtained by pure simulation without noise. In fact, it appears
that the BM-I conducts to a less effective recognition than
the BM-C method, while the opposite was mentioned in
Part §III-B. But one has to keep in mind that the two
simulated noises were statistically independent while they are
highly correlated in the real measured signals. Moreover, the
acoustic environment is highly reverberant, conducting to an
important degradation of the intercorrelation function. These
reverberations could also explain the effective learning of the
speaker by the BM-C method, the binaural cues being highly
modified by the environment: apparently, sounds are not well
localized in this environement. This effect is demonstrated by
the increase of the speaker recognition rate for longer signals.
As a conclusion, the experiments on real recorded data seem
to show the potential problems of binaural methods.

V. CONCLUSIONS AND FUTURE WORKS
We have presented in this paper an Automatic Speaker

Recognition system working in a binaural context. The pro-
posed recognition method relies on parallel Predictive Neural
Networks exploiting MFCC coefficients to discriminate mul-
tiple talkers. A first contribution of the paper is the definition

TABLE IV
EXPERIMENTAL SPEAKER RECOGNITION SCORES.

Trames 3s 5s 15s
BM-C reco. rate 36.66 77.71 83.81 88.57
BM-I reco. rate 27.60 41.71 40.00 37.14

of an original pararallel learning algorithm based on the
control of the learning rate of each competitive network.
On this basis, two different strategies have been evaluated,
based on intercorrelation or concatenation. We have then
studied the effect of the speaker spatial position during the
learning and evaluation steps. Finally, we evaluated how the
binaurality can be exploited to improve the recognition rates
in noisy conditions. The BM-I method is the most robust to
position change and whatever the SNR values. Nevertheless,
the BM-C method seems to be able to estimate the talker
position. Preliminary experimental results have also been
presented. They exhibit the sensitivity of the BM-I method
to reveberations.

We are now working on defining a larger experimental
speaker dataset embedding at least 20 male and female
speakers recorded from a high number of spatial positions
with the dummy-head. Moreover, in order to robustify the
proposed systems with respect to reverberations, a prepro-
cessing step will be added before the features extraction step.
This preprocessing stage will be based on equalization and
dereverberation of the acquired signals.
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