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Abstract— The MUSIC algorithm (MUltiple SIgnal Classifi-
cation) is a well-known high-resolution method to sound source
localization. However, as it is essentially narrowband, several ex-
tensions can be envisaged when dealing with broadband sources
like human voice. This paper presents such extensions and
proposes a comparative study w.r.t. specific robotics constraints.
An online beamspace MUSIC method, together with a recently
developed beamforming scheme, are shown to constitute a
mathematically sound and potentially efficient solution.

I. INTRODUCTION

“Robot Audition” is a key paradigm to natural human-
robot communication. Enabling a human to interact through
voice requires to endow the robot with capabilities of speaker
localization, voice extraction and speech recognition. Numer-
ous techniques coming from the Array Signal Processing
community can be assessed to precisely localize sound
sources. Generally, they rely on the farfield assumption,
i.e. sound sources are assumed far enough so that planar
wavefronts can be considered. However, in real operations
with human speakers, the voice signal, traditionally restricted
to the bandwidth [300Hz;3kHz], together with the use of
a small-size microphone array, imply spherical wavefronts.
Beamforming can be straightly adapted to this nearfield case
by expressing the array pattern as an explicit function of
the distance r to the source. But classical delay-and-sum
beamforming is shown to have a bad resolution in the bearing
and range estimation [1]. Consequently, we have proposed
in [2] an improved nearfield beamforming method. As it
presupposes the knowledge of r, other methods must be en-
visaged for simultaneous azimuth and range estimation. For
instance, recent robotics papers combine classical delay-and-
sum beamforming with other cues or algorithms to estimate
the sound source positions. A successful range and bearing
estimation based on cross-correlation techniques mixed with
a particle-based tracking algorithm is proposed in [3]. A
2D sound source mapping system which benefits from the
movement of the robot is presented in [4]. A real-time
tracking of multiple sound sources by integration of multiple
microphone arrays is performed in [5]. Ref. [1] shows that
the well known subspace method MUSIC (for MUltiple
SIgnal Classification) can be successfully applied offline to
get a good range and bearing estimation. To our knowledge,
this has been the only robotics implementation based on
any high-resolution algorithm. In fact, MUSIC cannot be
used in realtime because of its very heavy computational
cost. Nevertheless, very recent broadband extensions can
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drastically reduce the load. Some of them are hereafter
presented and compared with respect to robotics constraints.

The paper is organized as follows. The notations are first
defined in Section II. A recall on the classical narrowband
MUSIC algorithm follows. Next, a first immediate extension
of the previous algorithm to the broadband case, similar
to [1], is proposed in Section III. Its computational cost
makes it unsuited to robotics. So, Section IV describes
a recent broadband beamspace extension which, combined
with our beamforming synthesis method proposed in [2],
forms an efficient scheme. A conclusion ends the paper.

II. THE NARROWBAND MUSIC ALGORITHM
In the whole paper, (.)T and (.)H respectively term the

transpose and Hermitian transpose operators. Normal lower-
case letters and capitals depict signals in the temporal and
frequency domains, respectively. Bold letters term vectors
made of such signals while underlined bold letters relate to
matrices. The N ×N identity and N ×M zero matrices are
denoted IN and ON,M . E[.] is the expectation operator.

A. Hypotheses and Problem statement
It is assumed that the 3D space is homogeneous and

isotropic when no acoustic perturbation is present, and
that the linear acoustics hypotheses hold. Let D pointwise
independent zero-mean stationary sources be positioned into
this environment. The wavefield they create is spatially
sampled by an array of N > D omnidirectional sensors.
Each dth source position, d = 1, . . . ,D, is depicted by its
spherical coordinates vector rd = (rd ,θd ,φd)

T in a frame
F = (O,~x,~y,~z). The wave propagation velocity is supposed
constant and equal to c = 340m.s−1. Though the localization
methods hereafter presented do not need this property, the
antenna is linear, with evenly spaced elements distributed
along the ~z-axis at coordinates zn, n = 1, . . . ,N, so that θd
and φd term the dth source azimuth and elevation angles.

The received complex signal at F ’s origin is thus the
sum of the contributions sd(t) relative to each dth source,
d = 1, . . . ,D. In the so-called narrowband sources case, each
sd(t) reads as sd(t)= Sd(k)e2 jπ f t= Sd(k)e jkct , with f and
k = 2π f

c the sources common temporal and spatial fre-
quencies. Define the vector S(k) = (S1(k), . . . ,SD(k))T . The
complex envelopes Xn(k) of the signals xn(t) perceived at
the array, n = 1, . . . ,N, gathered into the vector X(k) =
(X1(k), . . . ,XN(k))T , then satisfy [6]

X(k) = V(r1, . . . ,rD,k)S(k)+B(k), (1)

with V(r1, . . . ,rD,k) = (V(r1,k) | ... | V(rD,k)) the N×D matrix
built up with the steering vectors V(rd ,k) relative to each
dth source and B(k) = (B1(k), . . . ,BN(k))T an additive noise



on the sensors. This noise is assumed zero-mean, stationary,
temporally and spatially white, of known equal power on
each microphone, and independent of the sources, so that

E[BBH ] = σ
2
N IN and E[B(VS)H ] = 0. (2)

This independence assumption, though a priori criticizable
for robotics, will be proved nonrestrictive thanks to a new
problem statement in Section IV. Due to the symmetry of
the problem around the~z-axis, each dependency on rd can be
reduced to a dependency on (rd ,θd). Recalling that zn terms
the ~z-coordinate in F of the nth sensor, the nth entry of any
steering vector V(r,k), with r = (r,θ ,φ)T a dummy vector
of spherical coordinates, takes the form Vn(r,θ ,k) where

Vn(r,θ ,k) = re jkr e− jk
√

r2+z2
n−2rzn cosθ√

r2 + z2
n−2rzn cosθ

, n = 1, . . . ,N. (3)

If r = ||r|| tends to +∞, then V(r,θ ,k) reads as the farfield
steering vector V∞(θ ,k) of coordinates

V ∞
n (θ ,k) = lim

r→+∞
Vn(r,θ ,k) = e jkrzn cosθ , n = 1, . . . ,N. (4)

In fact, V(r,θ ,k) can be approximated by V∞(θ ,k) as soon
as r exceeds the Rayleigh distance R = 2L2

0/λ , with L0 the
array length and λ = c/ f = 2π/k the wavelength.

A meaningful problem is as follows: the perceived signals
vector x(t) = (x1(t), . . . ,xN(t))T being given, how can the
number D of sources and their ranges and azimuths (rd ,θd),
d = 1, . . . ,D, be determined?

B. Mathematical foundations of the MUSIC method
The so-called “high-resolution” parametric spectral anal-

ysis method MUSIC constitutes an efficient solution to the
above problem. In order to alleviate the notation, the depen-
dencies of variables upon the single involved wavenumber k
will be temporarily omitted.

MUSIC is based on the eigendecomposition of the
covariance—or interspectral—matrix CX = E[XXH ] of X,
which describes the second-order statistics of the signals
perceived at the array. From (1) and (2), CX also satisfies

CX = V(r1, . . . ,rD)CSVH(r1, . . . ,rD)+σ
2
N IN , (5)

with CS = E[SSH ] the D×D covariance matrix of the
sources and CB= E[BBH ] = σ2

N IN the noise covariance ma-
trix. The N×N matrix CY = V(r1, . . . ,rD)CSVH(r1, . . . ,rD)
is Hermitian symmetric, positive semidefinite, and thus
admits N real nonnegative eigenvalues λn which can be
associated to orthogonal right eigenvectors Un, n = 1, . . . ,N.
As the sources are assumed mutually independent and
as V(r1, . . . ,rD) is assumed full rank whatever r1, . . . ,rD,
CY has rank D so that its eigenvalues can be ordered
as λ1 ≥ λ2 ≥ . . .≥ λD > λD+1 = . . . = λN = 0. Note that the
vectors U1, . . . ,UD span the range of V(r1, . . . ,rD), i.e. the
D-dimensional subspace S of CN generated by the steering
vector evaluated at the sources locations, and henceforth
termed “signal space”. From CX = CY +σ2

N IN , it follows:

CX =(US | UN )


λ1+σ2

N O |
. . . | O

λD+σ2
N |

O | σ2
N IN−D

(US | UN )H;
(6)

• US = (U1 | ... | UD ) ∈ RN×D is the matrix of the D
aforementioned eigenvectors, now associated to the
eigenvalues λn +σ2

N , n = 1, . . . ,D, and still generating
the signal space;

• UN = (UD+1 | ... | UN ) ∈ RN×(N−D) is the matrix of
the (N − D) remaining eigenvectors, associated to
the eigenvalues equal to σ2

N , and whose range is
henceforth termed the “noise space” N . Remind that
(US | UN )H(US | UN ) = IN .

Consequently, under the aforementioned statistical hypothe-
ses, as soon as the covariance matrix CX is exactly computed,
(6) can enable the recovery of the number of sources—which
is N minus the number of repetitions of σ2

N — and of
their locations—for their associated steering vectors are
orthogonal to UN .

C. Estimation of the covariance matrix
In practice, CX is not known, as only one time record of

x(t) = (x1(t), . . . ,xN(t))T is available. Moreover, the complex
envelopes vector X(k) cannot be exactly determined. So
these quantities need to be approximated. One common
strategy consists in computing such approximations on time
snapshots. If the localization has to be computed at time
indexes t = T0,2T0 . . ., then one can proceed in two steps.
On the one hand, x(t) is sampled—provided the Shannon
theorem holds—at a rate equal to L

T0
, L ∈ N, so that at

each time t, X(k) is approximated by X̂t(k) from a L-
point Discrete Fourier Transform (DFT) onto the snapshot
{t(1− L−1

L ), . . . , t(1− 1
L ), t}. On the other hand, CX is esti-

mated at time t by replacing in its definition the expectation
by a weighted sum over a sliding window of W samples with
interspace of T0 , e.g. by defining1

ĈX =
1

W

t
T0

∑
l= t

T0
−(W−1)

X̂lT0(k)X̂
H
lT0

(k). (7)

Though this estimation process looks trivial at first glance,
it can condition the performance of the whole method. For
instance, the expectation in CX is all the better mimicked as
the estimated X̂l(k) over the W -length window are indepen-
dent, which precludes the use of overlapping snapshots [6].

D. The MUSIC algorithm
As aforementioned, the steering vector V(r) = V(r,θ ,k)

gets orthogonal to the noise space N if and only if it is
evaluated at the location of one source. Then, it follows that1
∀(r,θ) ∈ {(r1,θ1), . . . ,(rD,θD)},

N

∑
i=D+1

|VH(r,θ)Ui|
2 = VH(r,θ)ΠNV(r,θ) = 0, (8)

where ΠN = UN UH
N is called the “projector in the noise

space”. As the genuine covariance matrix CX and its estimate
ĈX at time t differ, the genuine and approximated projectors
ΠN and Π̂N do not perfectly match. So, the locations are
established by isolating the maximum values of the pseudo-
spectrum

h(r,θ) =
1

VH(r,θ)Π̂NV(r,θ)
. (9)

The whole MUSIC algorithm is depicted in Algorithm 1.

1The reference to t is not made explicit in order to alleviate the notation.



for each localization time t do
- turn the values of {x(t(1− L−1

L )), . . . ,x(t(1− 1
L )),x(t)} into the

approximation X̂t(k) of X(k) by a L-point DFT;
- estimate CX by ĈX from the knowledge of
X̂t−(W−1)T0

(k), X̂t−(W−2)T0
(k), . . . , X̂t(k) through (7);

- detect the number of sources as N minus the number of
eigenvalues of ĈX approximately equal to σ2

N ;
- from the spectral decomposition of ĈX , compute the projector
Π̂N on the noise space;
- isolate the sources locations as the maxima of the
pseudo-spectrum h(r,θ) defined in (9).

end
Algorithm 1: MUSIC narrowband algorithm

III. TOWARDS A BROADBAND EXTENSION OF MUSIC

A. Generalities

In many practical cases, the sources cannot be consid-
ered as narrowband. This is so in the context of Human-
Robot Interaction, where any filtering of human voice
should not reject components from the frequency bandwidth
[300Hz;3kHz] in order to ensure the intelligibility of the
message. Extending the MUSIC algorithm to broadband gen-
erally follows a “frequency-based” approach, i.e. a dedicated
processing is first applied to narrow frequency intervals—or
“bins”— coming from a partition of the whole frequency
range, prior to turning the obtained informations into a “com-
posite” pseudo-spectrum. B such frequency bins are hence-
forth considered, each being centered on kb, b = 1, . . . ,B.

B. A naive extension

The straightest strategy follows as far as possible the
lines of the narrowband algorithm. In other words, the
Fourier transform X(k) is still approximated from the DFT
of the perceived signals vector x(t) on a L-point snapshot.
Likewise, the covariance matrices CX (k1), . . . ,CX (kB) of
X(k1), . . . ,X(kB) are estimated by applying to each bin a
scheme similar to (7). From the subsequent spectral decom-
position of each ĈX (kb), separate pseudo-spectra hb(r,θ) are
determined, b = 1, . . . ,B. The localization is then performed
by looking for the maxima of the average pseudo-spectrum

hnaive(r,θ) =
1
B

B

∑
b=1

hb(r,θ). (10)

This naive extension of MUSIC to broadband is summa-
rized in Algorithm 2.

for each localization time t do
for each frequency bin kb do

- collect the approximate Fourier transforms X̂t(kb) then
compute the estimates ĈX (kb), b = 1, . . . ,B, as was done in
Algorithm 1;
- from the spectral decomposition of ĈX (kb), compute the
projector Π̂N(kb) and the pseudo-spectrum hb(r,θ) related
to the bth bin;

end
- isolate the sources locations as the maxima of the
pseudo-spectrum hnaive(r,θ) defined in (10).

end
Algorithm 2: MUSIC naive extension to broadband

Fig. 1. Localization result obtained with the naive broadband extension

C. Localization results

In all the following, a N = 8-microphone array with even
interspace d = λ3kHz/2 = 5.66cm is considered. D = 2 point-
wise sound sources emit independent voice signals from the
positions (2m,45◦) and (1.5m,130◦). Spatially and tempo-
rally white noise is then added to each microphone per-
ception, with a Signal to Noise Ratio (SNR) set to 10dB.
As indicated in the previous subsection, a spatial covariance
matrix CX (kb) is defined for the microphone signals on each
bth frequency bin and for each localization time t, and is esti-
mated through a time-average similar to (7). More precisely,
the localization period being set to T0 = 1024/ fe, with fe =
15kHz, the approximation X̂t(kb) defined in subsection II-C
is obtained from a 1024-point Fast Fourier Transform (FFT)
of samples acquired at fe, leading to 513 evenly spaced
bins ranging brom 0 Hz to fe/2. A number W = 16 of
FFT results, computed over successive disjoint 1024-point
rectangular temporal windows, is then collected to estimate
the covariance matrix CX . In all the following, only the
frequencies within [300Hz;3kHz] are used for localization,
so that about B = 180 frequency bins are considered in order
to form the MUSIC pseudo-spectrum (10).

The naive broadband extension depicted in Algorithm 2
has been implemented under MATLAB comprehensible non-
optimized code for performances comparison. Simulations
produce 58 MUSIC pseudo-spectra hnaive(r,θ) all along the
time horizon. One of these is reported on Figure 1:

• Two sharp peaks, with angular positions at the sources
azimuths θ1 and θ2 whatever the scanned range r, can be
exhibited. This nice property shows that the estimation
of the sources bearings can be performed without any
knowledge of their distances, even when the farfield
hypothesis does not hold—typically for distances closer
than 1.2m for the lowest frequency 300Hz. This is a sig-
nificant improvement compared to beamforming tech-
niques, which must be adapted to the source distance
for correct azimuth estimation in the nearfield [2].

• Source ranges can be estimated by detecting the pseudo-
spectrum maxima. Figure 1 shows in fact two wide
lobes whose maxima are located close to the source
simulated distances r1 and r2. More precisely on the 58
simulated pseudo-spectra, the estimation error on the
two sources ranges does not exceed 30 cm.



The above interesting properties are similar to these shown
in [1], and could lead to the conclusion that this wideband
extension of the MUSIC algorithm is well suited to robotics
applications. However, one has to keep in mind that Figure 1
has been obtained by averaging about 180 independently
computed pseudo-spectra, each one corresponding to a bin
in the bandwidth [300Hz;3kHz]. Such independent decompo-
sitions require very heavy computational resources—say 16
1024-point FFTs, 180 eigendecompositions of 8×8 matrices
being the most critical and complex part of the implementa-
tion [7], and 180×10 matrix products corresponding to each
hypothezised range and bearing values—so that the real time
implementation of Algorithm 2 on an embedded plateform
would be prohibitive. Consequently, other wideband exten-
sions of the MUSIC algorithm must be envisaged for real
time practical implementation.

IV. BROADBAND MUSIC IN BEAMSPACE

In light of the above section, a less costly strategy must be
envisaged to extend MUSIC to the localization of wideband
sources. This implies a reduction in the number of eigen-
decompositions to be performed at each localization time.
One basic possibility might consist in averaging over the
B bins the covariance matrices CX (kb), b = 1, . . . ,B, prior
to computing the eigendecomposition of the single resulting
matrix. Unfortunately, such an approach is not sound, for the
subspaces of CN spanned by the noise eigenvectors matrices
UN (kb) relative to each bth bin differ, a property called “mis-
alignment”. The difficulty is then how to coherently combine
the signal (resp. noise) spaces at each bin into a single signal
(resp. noise) space endowed with algebraic properties which
depend on the sources number and locations.

A. Fundamentals of alignment
In [8], Wang and Kaveh develop a mathematically prin-

cipled solution to this problem in the planar waves case.
Interestingly, under a mild constraint, it allows the sources
to be correlated and to emit with a low SNR in an
arbitrary noise field. To make the approach cope with
nearfield sources, the starting point remains (1), the matrix
V(r1, . . . ,rD,k) being again defined from (3) and column
full-rank. However, CS(k) = E[S(k)SH(k)] may be singular
due to sources correlation, and the noise wavefield —though
independent of the sources— is allowed to have the form
E[B(k)BH(k)] = σ2

N C(k), with C(k) known. Note that such
a problem statement can cope with real reverberant environ-
ments encountered in robotics applications, in that it suffices
to consider the multipath propagation of a source as the
propagation of several correlated—mirrored—sources.

First, a reference frequency k0 is selected. Then, “focal-
ization matrices” T(r,kb), b = 1, . . . ,B, are defined so that

∀(r,θ), T(r,kb)V(r,θ ,kb) = V(r,θ ,k0), (11)
i.e. so as to transform the array vector at any frequency bin kb
into its value at k0. Computing the second order statistics of
T(r,kb)X(kb) for each bth bin, then summing the obtained
matrices, one gets ΓX (r) = ∑

B
b=1 T(r,kb)CX (kb)TH(r,kb),

which also satisfies

ΓX (r) = V(r,θ ,k0)ΓSVH(r,θ ,k0)+σ
2
N ΓN (r), (12)

with ΓS =
B

∑
b=1

CS(kb) and ΓN (r)=
B

∑
b=1

T(r,kb)C(kb)TH(r,kb).

ΓX (r) and ΓN (r) are respectively called the “focalized
covariance matrices” of the array and noise signals.

The generalized eigenvalues µn and eigenvectors Un,
n = 1, . . . ,N, of the matrix pencil (ΓX (r),ΓN (r)), reordered
so that µn ≥ µn+1, then satisfy, with US (r) = (U1 | ... | UD )
and UN (r) = (UD+1 | ... | UN ),

µD+1 = · · ·= µN = σ
2
N and VH(r,θ ,k0)UN (r) = 0.

(13)

As before, a pseudo-spectrum in the array signals space

harray(r,θ) =
1

VH(r,θ ,k0)ÛN (r)ÛH
N (r)V(r,θ ,k0)

(14)

can be defined from the estimates Γ̂X (r) and Γ̂N (r) of the
focalized covariance matrices, and is maximum at the sources
locations. Importantly, these focalized covariance matrices
estimates not only require the computation of ĈX (kb),
b = 1, . . . ,B, over time snaphots, but also the approximation
of the genuine focalization matrices T(r,kb). Ref. [8] sug-
gests to use some prior knowledge about the locations to be
estimated. Ref. [9] proposes an interesting alternative based
on modal analysis, which does not necessitate any prior
information. Rather than going into their details, another
less costly approach developed in [10] is presented hereafter,
relying on modal analysis and beamforming.

B. A broadband beamspace algorithm
1) Modal representation of beampattern: The response

—or beampattern— Dq(r,θ ,kb) of any beamformer indexed
by q to a point source at polar coordinates (r,θ) and
frequency kb is given by [6]

Dq(r,θ ,kb) = WH
q (kb)V(r,θ ,kb), (15)

where Wq(kb) = (wq,1(kb), . . . ,wq,N(kb))T is the array
weights vector at frequency kb. One can show that (15) can
be turned into

Dq(r,θ ,kb) =
∞

∑
m=0

αq,m(kb)Rm(r,kb)Ym(θ), where (16)

Rm(r,kb) , re jkrh(2)
m (kbr), Ym(θ) ,

√
2m+1

4π
Pm(cosθ),

Pm(.) and h(2)
m (.) terming the Legendre and the spherical Han-

kel functions, respectively. The set {αq,m(kb)} is composed
of the complex “modal coefficients”. In fact, (16) defines an
orthogonal transform pair analogous to the familiar Fourier
series, so that {αq,m(kb)} fully characterize Dq(r,θ ,kb).
More details can be found in [2].

2) A beamspace processor: In beamspace processing, Q
beamformers —with D ≤ Q < N— exploit the N micro-
phones outputs to form the Q-dimensional vector

Z(kb) =
(
Z0(kb), . . . ,ZQ−1(kb)

)T = WH(kb)X(kb), (17)

with W(kb) = (W0(kb) | ... | WQ−1(kb)). Thus, W(kb) can be
seen as an operator from a N-dimensional microphones
elementspace to the Q-dimensional output beamspace. The
key idea of the beamspace broadband MUSIC method [10]



is to perform such a transform by selecting beamformers
which lead to a focusing property similar to (11). In fact,
[10] champions the use of the set of beamformers

Dq(r,θ ,kb) = Yq(θ), (18)

which are therefore invariant w.r.t. frequency and range.
This last property can be easily obtained by considering
(16). Let W∞(kb) be the set of coefficients producing the
farfield response Dq(∞,θ ,kb) = Yq(θ). The set of coeffi-
cients W(r,kb) leading to the same responses at distance r,
Dq(r,θ ,kb) = Yq(θ), are [10]

W(r,kb) = W∞(kb)RH
b (r), (19)

with RH
b (r) = diag

[
j/(kbR0(r,kb)), . . . , jQ/(kbRQ−1(r,kb))

]
.

In other words, (19) simply indicates how the coefficients
W∞(kb) achieving the farfield beampattern Yq(θ) must be
modified so as to steer the beamspace processor with the
same response at distance r.

3) Broadband beamspace MUSIC algorithm: Suppose
that the array weight matrix W∞(kb) related to Q
farfield beamformers defined in (18) has been synthe-
sized for each bth frequency bin, b = 1, . . . ,B. Setting
Z(kb) = WH(r,kb)X(kb), the Q×Q “beamspace covariance
matrix” CZ(r,kb) = E[Z(kb)ZH(kb)] comes as

CZ(r,kb) = DCS(kb)DH +σ
2
N CW (r,kb), (20)

with D = D(r1, . . . ,rD,kb) = WH(r,kb)V(r1, . . . ,rD,kb), and
CW (r,kb) = WH(r,kb)C(kb)W(r,kb) the “beamspace noise
covariance matrix”. Through a procedure similar to section
IV-A, and by defining the two matrices ΓZ(r) and ΓW (r) as

ΓZ(r) =
B

∑
b=1

CZ(r,kb) and ΓW (r) =
B

∑
b=1

CW (r,kb), (21)

the generalized eigenvalue decomposition of the matrix pen-
cil (ΓZ(r),ΓW (r)) leads to a pseudo-spectrum harray(r,θ)
in the vein of (14), from which the localization can be
performed. This beamspace broadband extension of MUSIC
is summarized in Algorithm 3; the key point is to notice that
a total of B eigendecompositions of N×N complex matrices
is traded for a single generalized eigendecomposition of a
—lower dimension— Q×Q complex matrix.

for each time localization time t do
for each distance r do

for each frequency bin kb do
- collect the approximate Fourier transforms X̂(kb) then
compute the estimates ĈX (kb), b = 1 . . . ,B.;
- compute the matrix W(r,kb) through (19) by using
offline optimization results;
- compute the noise covariance matrix
CW (r,kb) = WH(r,kb)C(kb)W(r,kb) and the estimate
ĈZ(r,kb) of the beamformer’s output covariance matrix
CZ(r,kb) = WH(r,kb)CX (kb)W(r,kb) ;

end
- compute the true/approximated focalized noise and
beamformer’s output covariance matrices ΓW (r) and Γ̂Z(r)
along (21);
- compute the generalized eigenvalue decomposition of the
matrix pencil (Γ̂Z(r),ΓW (r));
- from the signal space S and the noise space N , define
the two matrix ÛS and ÛN , and compute the MUSIC
pseudo-spectrum harray(r,θ);

end
end

Algorithm 3: Wideband beamspace MUSIC

C. Localization results
As outlined in the previous subsection, the localization

algorithm is based on two successive steps. The first step
consists in synthezising Q farfield beampatterns Dq(θ ,k) =
Yq(θ) for all frequencies k in the frequency bandwidth of
interest. Such beampatterns are then used in a second step to
obtain the MUSIC pseudo-spectrum harray(r,θ). We recently
proposed in [2] a new beampattern synthesis method based
on convex optimization, which benefits from the modal form
(16) to reduce the computational cost. Such a method is
particularly indicated to obtain the reference beampattern
(18) needed for the localization algorithm. This subsection
is organized as follows. The synthesis method presented in
[2] is first recalled together with some synthesis outcomes.
Next, localization results are proposed.

1) Synthesis method: The aim is to determine the vec-
tor W∞

q (kb) = (wq,1(kb), . . .wq,N(kb))T which enables to ap-
proximate the reference farfield beampattern D̃∞

q (θ ,kb) =
Yq(θ) described by its complex modal coefficients
α̃q,0(k) . . . α̃q,M−1(k). This is dealt with through the following
convex optimization problem

minimize ε subject to
|| αq,m(kb)− α̃q,m(kb) || ≤ ε, ∀m ∈ {0..M−1}, (22)

which minimizes the “distance” between the first M modal
coefficients of the reference and actual beampatterns. These
of the actual beampattern, denoted αq,m(kb), are shown to be
a function of the array sensor positions zn, n = 1, . . . ,N and
of the unknown vector weights W∞

q (kb); they verify

αq,m(kb) = γm(kb) W∞
q (kb)HJm(kb), (23)

where Jm(k) = ( jm(kz1), . . . , jm(kzN))T , with
jm(x) ,

√
π

2x Jm+ 1
2
(x) the spherical Bessel function, and

γm(k) =−2ik
√

π(2m+1). Notice that in the case considered
here, the reference beampatterns D̃q(θ ,k), q = 0, . . .Q− 1,
are the spherical harmonics Yq(θ). Consequently, according
to (16), their modal coefficients α̃q,m(kb) at frequency kb
can immediately be written as

α̃q,m(kb) =
1

Rm(r,kb)
δq,m, (24)

where δq,m is the Kronecker delta.
2) Synthesis results: The optimization problem (22)-(23)-

(24) is solved by means of the solver SDPT3 coupled with
YALMIP1 under MATLAB for each frequency kb and each
spherical harmonics Yq(.), q = 0, . . . ,Q−1. Considering the
small size of the array (about 40cm long) and the reduced
microphone number (N = 8), we assert that the Q = 4 first
spherical harmonics can be synthesized without any visible
error. In the case considered here, about 180 frequency
bins in the bandwith [300Hz;3kHz] are considered, so that
180×Q = 720 farfield beamformers must be determined
offline. Such syntheses take only about 10 minutes thanks to
the low number M = 14 of constraints involved in (22) for
each frequency, and lead to the results shown in Figure 2.
The Q = 4 resulting beampatterns are clearly frequency

1http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html
http://control.ee.ethz.ch/˜joloef/yalmip.php



Fig. 2. Synthesis result

invariant on the bandwidth of interest. In fact, the synthesized
spherical harmonic Y3(θ) shows small gain variations for
the lowest frequency, which have fortunately no effect on
the forthcoming localization algorithm. In conclusion, the
optimization process we have proposed in [2] clearly benefits
from the modal representation of beampatterns and is conse-
quently well suited to this broadband beamspace extension
of the MUSIC method.

3) Localisation results: In all the following, all the pa-
rameters proposed in Section III-C remain unchanged, so
that an estimation ĈX (kb) of the spatial covariance CX (kb) is
computed at each localization time t through (7). According
to Algorithm 3, this estimation is then combined with the
previous offline synthesis results to compute at each time t
the two covariance matrices ĈZ and CW . Then, simulations
produce 58 MUSIC pseudo-spectra harray(r,θ) all along the
time horizon. One of these, corresponding to the same time
snapshot as in Figure 1, is reported on Figure 3. The two
pseudo-spectra hnaive(r,θ) and harray(r,θ) are very similar,
so that the conclusions itemized in subsection III-C still
hold. The search for the source locations can be performed
by two one-dimensional searches: the first step consists in
estimating the bearing in the farfield while the second step
is achieved by scanning over r using the former bearing
estimation. But though the two functions hnaive(r,θ) and
harray(r,θ) look identical, the ways they are obtained are
fundamentally different. The first naive broadband extension
is based on the meaningless average of multiple pseudo-
spectra independently computed for each frequency kb, while
the broadband beamspace extension exploits the spectral
alignment property to compute directly the final MUSIC
spatial spectrum. Consequently, we assert that this broadband
beamspace extension clearly outperforms the naive method
in terms of computing cost and ease of implementation. For
instance, the 58 pseudo-spectra corresponding to each local-
ization time t are computed with Algorithm 2 in about 75
minutes under MATLAB, while Algorithm 3 produces quite
the same results in only 5 minutes. Since simulations of the
classical narrowband Algorithm 1 —already implemented in
real time with DSP [7] or FPGA-based [11] system— take
about 2 minutes, our first implementation tests let us think
that Algorithm 3 will be used in real time.

Fig. 3. Localization result

V. CONCLUSION

A theoretical study and a performances comparison of two
broadband methods has been presented for sound sources
localization in robotics. The first one, called “naive exten-
sion”, is based on multiple independent narrowband MU-
SIC computations and therefore requires important compu-
tational ressources. The second one benefits from frequency
and range invariant beamformers to obtain a “focalization
property” which enables the direct computation of a sin-
gle pseudo-spectrum for all frequencies of interest. This
beamspace extension appears to be well suited to robotics ap-
plications thanks to its lower computational requirements and
because multipath propagation in reverberant environments
can be handled. In view of the promising results obtained in
simulation, we plan to work on the practical implementation
and assessment of the method onto our experimental FPGA-
based prototype.
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